求解双曲型方程组的解析方法

J. Veselý, S. Doan
{"title":"求解双曲型方程组的解析方法","authors":"J. Veselý, S. Doan","doi":"10.1109/RADIOELEK.2015.7129064","DOIUrl":null,"url":null,"abstract":"A hyperbola is defined by difference of distances to foci, in which its absolute value is a constant. Solutions of a system of hyperbolic equations (SoHE) can represent for intersection points of two hyperbolas given by four individual points in xy-plane. In this study, analytical method solving SoHE is aimed to find intersection points of two hyperbolas in the general in xy-plane. The demonstrated method is based on two algorithms for two cases, in which the two hyperbolas are/are not perpendicular to each other. According to analytical algorithms solving quadratic and quartic equation in general, the results of analytical method solving SoHE are shown like explicit solutions. These results are requisite for further development in finding intersection points of two hyperbolas in 3-D space in general and finally used in estimating target position using TDOA.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analytical method solving system of hyperbolic equations\",\"authors\":\"J. Veselý, S. Doan\",\"doi\":\"10.1109/RADIOELEK.2015.7129064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hyperbola is defined by difference of distances to foci, in which its absolute value is a constant. Solutions of a system of hyperbolic equations (SoHE) can represent for intersection points of two hyperbolas given by four individual points in xy-plane. In this study, analytical method solving SoHE is aimed to find intersection points of two hyperbolas in the general in xy-plane. The demonstrated method is based on two algorithms for two cases, in which the two hyperbolas are/are not perpendicular to each other. According to analytical algorithms solving quadratic and quartic equation in general, the results of analytical method solving SoHE are shown like explicit solutions. These results are requisite for further development in finding intersection points of two hyperbolas in 3-D space in general and finally used in estimating target position using TDOA.\",\"PeriodicalId\":193275,\"journal\":{\"name\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2015.7129064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

双曲线是由到焦点的距离差来定义的,其绝对值是一个常数。双曲方程组(SoHE)的解可以表示由xy平面上的四个单独的点所给出的两个双曲的交点。在本研究中,求解SoHE的解析方法的目的是在xy平面上求出一般情况下两个双曲线的交点。所演示的方法是基于两种算法的两种情况,其中两个双曲线是/不垂直于对方。根据一般求解二次方程和四次方程的解析算法,解析方法求解SoHE的结果以显式解的形式表示。这些结果对于在三维空间中寻找双曲线交点并最终应用于TDOA估计目标位置的进一步发展是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical method solving system of hyperbolic equations
A hyperbola is defined by difference of distances to foci, in which its absolute value is a constant. Solutions of a system of hyperbolic equations (SoHE) can represent for intersection points of two hyperbolas given by four individual points in xy-plane. In this study, analytical method solving SoHE is aimed to find intersection points of two hyperbolas in the general in xy-plane. The demonstrated method is based on two algorithms for two cases, in which the two hyperbolas are/are not perpendicular to each other. According to analytical algorithms solving quadratic and quartic equation in general, the results of analytical method solving SoHE are shown like explicit solutions. These results are requisite for further development in finding intersection points of two hyperbolas in 3-D space in general and finally used in estimating target position using TDOA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信