基于集成强化学习框架的NOMA-UAV网络和速率优化

S. K. Mahmud, Yue Chen, K. K. Chai
{"title":"基于集成强化学习框架的NOMA-UAV网络和速率优化","authors":"S. K. Mahmud, Yue Chen, K. K. Chai","doi":"10.1109/aiiot54504.2022.9817159","DOIUrl":null,"url":null,"abstract":"In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble Reinforcement Learning Framework for Sum Rate Optimization in NOMA-UAV Network\",\"authors\":\"S. K. Mahmud, Yue Chen, K. K. Chai\",\"doi\":\"10.1109/aiiot54504.2022.9817159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一个由深度q网络(dqn)组成的集成强化学习(ERL)框架。目的是优化非正交多址无人机网络(NOMA-UAV)的和速率。在固定的无人机轨迹上管理NOMA集群的下行链路功率(DL)和带宽分配。环境是动态的,每个节点的服务质量(QoS)需求是不同的。传统的强化学习(CRL)框架和提出的ERL集成之间的比较分析在以下指标上产生了性能增益。与具有单个DQN的传统强化学习框架相比,ERL在平均和速率方面获得了20%的性能增益,在频谱效率方面获得了2%的增益。它也在累积和速率和设备覆盖上在不同UAV速度上达到高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Reinforcement Learning Framework for Sum Rate Optimization in NOMA-UAV Network
In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信