{"title":"基于集成强化学习框架的NOMA-UAV网络和速率优化","authors":"S. K. Mahmud, Yue Chen, K. K. Chai","doi":"10.1109/aiiot54504.2022.9817159","DOIUrl":null,"url":null,"abstract":"In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble Reinforcement Learning Framework for Sum Rate Optimization in NOMA-UAV Network\",\"authors\":\"S. K. Mahmud, Yue Chen, K. K. Chai\",\"doi\":\"10.1109/aiiot54504.2022.9817159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensemble Reinforcement Learning Framework for Sum Rate Optimization in NOMA-UAV Network
In this work we present an ensemble reinforcement learning (ERL) framework comprising of deep-Q networks (DQNs). The aim is to optimize sum rate for non orthogonal multiple access unmanned aerial network (NOMA-UAV) network. Power in downlink (DL) and bandwidth allotment for a NOMA cluster is managed over fixed UAV trajectory. The environment is dynamic and quality of service (QoS) requirements are varying for each node on ground. A comparative analysis between conventional reinforcement learning (CRL) framework and proposed ensemble of ERL yields a performance gain in undermentioned metrics. The ERL achieves 20 percent performance gain in average sum rate and the gain in spectral efficiency is 2 percent, over conventional reinforcement learning framework with single DQN. It also achieves high performance over different UAV speeds in cumulative sum rate and device coverage.