{"title":"用于新一代太空服技术的多余机械肢体","authors":"Erik Ballesteros, Brandon Man, H. Asada","doi":"10.1109/ICRA48891.2023.10161579","DOIUrl":null,"url":null,"abstract":"This paper discusses the incorporation of a pair of Supernumerary Robotic Limbs (SuperLimbs) onto the next generation of NASA space suits. The wearable robots attached to the space suit assist an astronaut in performing Extra-Vehicular Activities (EVAs). The SuperLimbs grab handrails fixed to the outside of a space vehicle to securely hold the astronaut body. The astronaut can use both hands for performing an EVA task, rather than using one hand for securing the body or operating a tether. The SuperLimbs can also assist an astronaut in repositioning the body and stabilizing it during an EVA mission. A control algorithm based on Admittance Control is developed for a) virtually reducing the inertial load of the entire body so that an astronaut can reposition his/her body with reduced effort, and b) bracing the body stably despite reaction forces and disturbances acting on the astronaut during an EVA operation. A full-scale prototype of Space Suit SuperLimbs was constructed and tested. Results from the experimentation indicated that with the aid of SuperLimbs, energy consumption during EVAs is reduced significantly.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supernumerary Robotic Limbs for Next Generation Space Suit Technology\",\"authors\":\"Erik Ballesteros, Brandon Man, H. Asada\",\"doi\":\"10.1109/ICRA48891.2023.10161579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the incorporation of a pair of Supernumerary Robotic Limbs (SuperLimbs) onto the next generation of NASA space suits. The wearable robots attached to the space suit assist an astronaut in performing Extra-Vehicular Activities (EVAs). The SuperLimbs grab handrails fixed to the outside of a space vehicle to securely hold the astronaut body. The astronaut can use both hands for performing an EVA task, rather than using one hand for securing the body or operating a tether. The SuperLimbs can also assist an astronaut in repositioning the body and stabilizing it during an EVA mission. A control algorithm based on Admittance Control is developed for a) virtually reducing the inertial load of the entire body so that an astronaut can reposition his/her body with reduced effort, and b) bracing the body stably despite reaction forces and disturbances acting on the astronaut during an EVA operation. A full-scale prototype of Space Suit SuperLimbs was constructed and tested. Results from the experimentation indicated that with the aid of SuperLimbs, energy consumption during EVAs is reduced significantly.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10161579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supernumerary Robotic Limbs for Next Generation Space Suit Technology
This paper discusses the incorporation of a pair of Supernumerary Robotic Limbs (SuperLimbs) onto the next generation of NASA space suits. The wearable robots attached to the space suit assist an astronaut in performing Extra-Vehicular Activities (EVAs). The SuperLimbs grab handrails fixed to the outside of a space vehicle to securely hold the astronaut body. The astronaut can use both hands for performing an EVA task, rather than using one hand for securing the body or operating a tether. The SuperLimbs can also assist an astronaut in repositioning the body and stabilizing it during an EVA mission. A control algorithm based on Admittance Control is developed for a) virtually reducing the inertial load of the entire body so that an astronaut can reposition his/her body with reduced effort, and b) bracing the body stably despite reaction forces and disturbances acting on the astronaut during an EVA operation. A full-scale prototype of Space Suit SuperLimbs was constructed and tested. Results from the experimentation indicated that with the aid of SuperLimbs, energy consumption during EVAs is reduced significantly.