情境感知智能能源推荐器(CASER)

Paras Sitoula, Dwi A. P. Rahayu, P. D. Haghighi, Sarah Goodwin, Chris Ling
{"title":"情境感知智能能源推荐器(CASER)","authors":"Paras Sitoula, Dwi A. P. Rahayu, P. D. Haghighi, Sarah Goodwin, Chris Ling","doi":"10.1145/3365921.3365935","DOIUrl":null,"url":null,"abstract":"With increasing electricity demand, implementing smart energy saving strategies in residential houses becomes more important than ever before. Real-time and context-aware recommendation systems can provide residents with useful information to monitor their energy consumption, predict future usage, and recommend shifting their load to another time period. This study aims to improve the management of residential loads at the consumer level while at the same time providing energy providers with an overview of energy usage at the household and substation levels. This includes real time, historical and predicted usage. In this paper we introduce a Context-Aware Smart Energy Recommender (CASER) that consists of a client-side mobile app and a backend web portal. The implementation uses alternative visualization techniques to provide electricity usage information and recommendations for the consumers and the energy providers. The accuracy of our context-aware prediction was evaluated using publicly available smart meter data.","PeriodicalId":162326,"journal":{"name":"Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Context-Aware Smart Energy Recommender (CASER)\",\"authors\":\"Paras Sitoula, Dwi A. P. Rahayu, P. D. Haghighi, Sarah Goodwin, Chris Ling\",\"doi\":\"10.1145/3365921.3365935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing electricity demand, implementing smart energy saving strategies in residential houses becomes more important than ever before. Real-time and context-aware recommendation systems can provide residents with useful information to monitor their energy consumption, predict future usage, and recommend shifting their load to another time period. This study aims to improve the management of residential loads at the consumer level while at the same time providing energy providers with an overview of energy usage at the household and substation levels. This includes real time, historical and predicted usage. In this paper we introduce a Context-Aware Smart Energy Recommender (CASER) that consists of a client-side mobile app and a backend web portal. The implementation uses alternative visualization techniques to provide electricity usage information and recommendations for the consumers and the energy providers. The accuracy of our context-aware prediction was evaluated using publicly available smart meter data.\",\"PeriodicalId\":162326,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365921.3365935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Advances in Mobile Computing & Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365921.3365935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着电力需求的增加,在住宅中实施智能节能策略变得比以往任何时候都更加重要。实时和上下文感知的推荐系统可以为居民提供有用的信息,以监控他们的能源消耗,预测未来的使用情况,并建议将他们的负荷转移到另一个时间段。本研究旨在改善消费者层面的住宅负荷管理,同时为能源供应商提供家庭和变电站层面的能源使用概况。这包括实时、历史和预测的使用情况。在本文中,我们介绍了一个上下文感知智能能源推荐器(CASER),它由客户端移动应用程序和后端web门户组成。该实现使用替代的可视化技术为消费者和能源供应商提供用电信息和建议。我们使用公开的智能电表数据评估了上下文感知预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Smart Energy Recommender (CASER)
With increasing electricity demand, implementing smart energy saving strategies in residential houses becomes more important than ever before. Real-time and context-aware recommendation systems can provide residents with useful information to monitor their energy consumption, predict future usage, and recommend shifting their load to another time period. This study aims to improve the management of residential loads at the consumer level while at the same time providing energy providers with an overview of energy usage at the household and substation levels. This includes real time, historical and predicted usage. In this paper we introduce a Context-Aware Smart Energy Recommender (CASER) that consists of a client-side mobile app and a backend web portal. The implementation uses alternative visualization techniques to provide electricity usage information and recommendations for the consumers and the energy providers. The accuracy of our context-aware prediction was evaluated using publicly available smart meter data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信