{"title":"通过与事件方面和新闻内容的细粒度关联来消化新闻阅读器评论","authors":"Bei Shi, Wai Lam","doi":"10.1145/2983323.2983684","DOIUrl":null,"url":null,"abstract":"News articles from different sources reporting the same event are often associated with an enormous amount of reader comments resulting in difficulty in digesting the comments manually. Some of these comments, despite coming from different sources, discuss about a certain facet of the event. On the other hand, some comments discuss on the specific topic of the corresponding news article. We propose a framework that can digest reader comments automatically via fine-grained associations with event facets and news. We propose an unsupervised model called DRC, based on collective matrix factorization and develop a multiplicative-update method to infer the parameters. Experimental results show that our proposed DRC model can provide an effective way to digest news reader comments.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Digesting News Reader Comments via Fine-Grained Associations with Event Facets and News Contents\",\"authors\":\"Bei Shi, Wai Lam\",\"doi\":\"10.1145/2983323.2983684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"News articles from different sources reporting the same event are often associated with an enormous amount of reader comments resulting in difficulty in digesting the comments manually. Some of these comments, despite coming from different sources, discuss about a certain facet of the event. On the other hand, some comments discuss on the specific topic of the corresponding news article. We propose a framework that can digest reader comments automatically via fine-grained associations with event facets and news. We propose an unsupervised model called DRC, based on collective matrix factorization and develop a multiplicative-update method to infer the parameters. Experimental results show that our proposed DRC model can provide an effective way to digest news reader comments.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digesting News Reader Comments via Fine-Grained Associations with Event Facets and News Contents
News articles from different sources reporting the same event are often associated with an enormous amount of reader comments resulting in difficulty in digesting the comments manually. Some of these comments, despite coming from different sources, discuss about a certain facet of the event. On the other hand, some comments discuss on the specific topic of the corresponding news article. We propose a framework that can digest reader comments automatically via fine-grained associations with event facets and news. We propose an unsupervised model called DRC, based on collective matrix factorization and develop a multiplicative-update method to infer the parameters. Experimental results show that our proposed DRC model can provide an effective way to digest news reader comments.