{"title":"用于天文光子学的集成电子光栅","authors":"A. Stoll, Yu Wang, K. Madhav, M. Roth","doi":"10.1117/12.2541554","DOIUrl":null,"url":null,"abstract":"In pursuit of miniaturization of spectrograph systems, various wavelength-dispersive technologies such as arrayed waveguide gratings (AWGs) [1] and stationary-wave integrated Fourier transform spectrographs (SWIFTS) [2] have been studied as possible candidates for practical implementations of compact, lightweight integrated spectrographs. Integrated echélle-grating (EG) based wavelength demultiplexers have been proposed as an alternative to AWGs for use as the main diffractive element in such a compact spectrograph [3]. Apart from the simple Rowland mount type, more sophisticated geometries, such as the perfect chirped grating (PCG) [4] and two-stigmatic-point gratings (SEG) [5] exist. In this work, we present the first planar integrated echélle grating based on SEG geometry and specifically designed for astronomical spectroscopy in the NIR range ~1500 nm to 1600 nm.","PeriodicalId":131350,"journal":{"name":"Micro + Nano Materials, Devices, and Applications","volume":"24 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Integrated echélle gratings for astrophotonics\",\"authors\":\"A. Stoll, Yu Wang, K. Madhav, M. Roth\",\"doi\":\"10.1117/12.2541554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pursuit of miniaturization of spectrograph systems, various wavelength-dispersive technologies such as arrayed waveguide gratings (AWGs) [1] and stationary-wave integrated Fourier transform spectrographs (SWIFTS) [2] have been studied as possible candidates for practical implementations of compact, lightweight integrated spectrographs. Integrated echélle-grating (EG) based wavelength demultiplexers have been proposed as an alternative to AWGs for use as the main diffractive element in such a compact spectrograph [3]. Apart from the simple Rowland mount type, more sophisticated geometries, such as the perfect chirped grating (PCG) [4] and two-stigmatic-point gratings (SEG) [5] exist. In this work, we present the first planar integrated echélle grating based on SEG geometry and specifically designed for astronomical spectroscopy in the NIR range ~1500 nm to 1600 nm.\",\"PeriodicalId\":131350,\"journal\":{\"name\":\"Micro + Nano Materials, Devices, and Applications\",\"volume\":\"24 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2541554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In pursuit of miniaturization of spectrograph systems, various wavelength-dispersive technologies such as arrayed waveguide gratings (AWGs) [1] and stationary-wave integrated Fourier transform spectrographs (SWIFTS) [2] have been studied as possible candidates for practical implementations of compact, lightweight integrated spectrographs. Integrated echélle-grating (EG) based wavelength demultiplexers have been proposed as an alternative to AWGs for use as the main diffractive element in such a compact spectrograph [3]. Apart from the simple Rowland mount type, more sophisticated geometries, such as the perfect chirped grating (PCG) [4] and two-stigmatic-point gratings (SEG) [5] exist. In this work, we present the first planar integrated echélle grating based on SEG geometry and specifically designed for astronomical spectroscopy in the NIR range ~1500 nm to 1600 nm.