具有跳变马尔可夫扰动系统的最优控制的存在性

Robert M. Goor
{"title":"具有跳变马尔可夫扰动系统的最优控制的存在性","authors":"Robert M. Goor","doi":"10.1137/0314057","DOIUrl":null,"url":null,"abstract":"We consider stochastic optimal control problems of Mayer type with dynamics in the form of a system of ordinary differential equations perturbed by a countable state Markov process, and we prove the existence of an optimal control in the class of non-anticipative functions. The proof takes the same approach as the \"direct\" method of the calculus of variations, used extensively in deterministic problems, but substitutes probabilistic concepts where necessary.","PeriodicalId":164707,"journal":{"name":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence of an optimal control for systems with jump Markov disturbances\",\"authors\":\"Robert M. Goor\",\"doi\":\"10.1137/0314057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider stochastic optimal control problems of Mayer type with dynamics in the form of a system of ordinary differential equations perturbed by a countable state Markov process, and we prove the existence of an optimal control in the class of non-anticipative functions. The proof takes the same approach as the \\\"direct\\\" method of the calculus of variations, used extensively in deterministic problems, but substitutes probabilistic concepts where necessary.\",\"PeriodicalId\":164707,\"journal\":{\"name\":\"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0314057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0314057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑一类具有动态的Mayer型随机最优控制问题,其形式为常微分方程组受可数状态马尔可夫过程的扰动,证明了一类非预期函数的最优控制的存在性。该证明采用与“直接”变分法相同的方法,在确定性问题中广泛使用,但在必要时替代了概率概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of an optimal control for systems with jump Markov disturbances
We consider stochastic optimal control problems of Mayer type with dynamics in the form of a system of ordinary differential equations perturbed by a countable state Markov process, and we prove the existence of an optimal control in the class of non-anticipative functions. The proof takes the same approach as the "direct" method of the calculus of variations, used extensively in deterministic problems, but substitutes probabilistic concepts where necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信