实时智能摄像系统中的异常运动检测

Mona Akbarniai Tehrani, R. Kleihorst, Peter B. L. Meijer, L. Spaanenburg
{"title":"实时智能摄像系统中的异常运动检测","authors":"Mona Akbarniai Tehrani, R. Kleihorst, Peter B. L. Meijer, L. Spaanenburg","doi":"10.1109/ICDSC.2009.5289359","DOIUrl":null,"url":null,"abstract":"This paper discusses a method for abnormal motion detection and its real-time implementation on a smart camera. Abnormal motion detection is a surveillance technique that only allows unfamiliar motion patterns to result in alarms. Our approach has two phases. First, normal motion is detected and the motion paths are trained, building up a model of normal behaviour. Feed-forward neural networks are here used for learning. Second, abnormal motion is detected by comparing the current observed motion to the stored model. A complete demonstration system is implemented to detect abnormal paths of persons moving in an indoor space. As platform we used a wireless smart camera system containing an SIMD (Single-Instruction Multiple-Data) processor for real-time detection of moving persons and an 8051 microcontroller for implementing the neural network. The 8051 also functions as camera host to broadcast abnormal events using ZigBee to a main network system.","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Abnormal motion detection in a real-time smart camera system\",\"authors\":\"Mona Akbarniai Tehrani, R. Kleihorst, Peter B. L. Meijer, L. Spaanenburg\",\"doi\":\"10.1109/ICDSC.2009.5289359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a method for abnormal motion detection and its real-time implementation on a smart camera. Abnormal motion detection is a surveillance technique that only allows unfamiliar motion patterns to result in alarms. Our approach has two phases. First, normal motion is detected and the motion paths are trained, building up a model of normal behaviour. Feed-forward neural networks are here used for learning. Second, abnormal motion is detected by comparing the current observed motion to the stored model. A complete demonstration system is implemented to detect abnormal paths of persons moving in an indoor space. As platform we used a wireless smart camera system containing an SIMD (Single-Instruction Multiple-Data) processor for real-time detection of moving persons and an 8051 microcontroller for implementing the neural network. The 8051 also functions as camera host to broadcast abnormal events using ZigBee to a main network system.\",\"PeriodicalId\":324810,\"journal\":{\"name\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2009.5289359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文讨论了一种异常运动检测方法及其在智能摄像机上的实时实现。异常运动检测是一种监视技术,只允许不熟悉的运动模式导致报警。我们的方法分为两个阶段。首先,检测正常运动,训练运动路径,建立正常行为模型。前馈神经网络在这里用于学习。其次,通过将当前观察到的运动与存储的模型进行比较来检测异常运动。实现了一个完整的演示系统,用于检测室内空间中移动人员的异常路径。作为平台,我们使用了一个无线智能摄像头系统,该系统包含一个SIMD(单指令多数据)处理器,用于实时检测移动人员,一个8051微控制器用于实现神经网络。8051还可以作为摄像机主机,通过ZigBee向主网系统广播异常事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal motion detection in a real-time smart camera system
This paper discusses a method for abnormal motion detection and its real-time implementation on a smart camera. Abnormal motion detection is a surveillance technique that only allows unfamiliar motion patterns to result in alarms. Our approach has two phases. First, normal motion is detected and the motion paths are trained, building up a model of normal behaviour. Feed-forward neural networks are here used for learning. Second, abnormal motion is detected by comparing the current observed motion to the stored model. A complete demonstration system is implemented to detect abnormal paths of persons moving in an indoor space. As platform we used a wireless smart camera system containing an SIMD (Single-Instruction Multiple-Data) processor for real-time detection of moving persons and an 8051 microcontroller for implementing the neural network. The 8051 also functions as camera host to broadcast abnormal events using ZigBee to a main network system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信