聚类二值面板数据的扩展潜马尔可夫模型的极大似然估计

F. Bartolucci, V. Nigro
{"title":"聚类二值面板数据的扩展潜马尔可夫模型的极大似然估计","authors":"F. Bartolucci, V. Nigro","doi":"10.2139/ssrn.967378","DOIUrl":null,"url":null,"abstract":"Computational aspects concerning a model for clustered binary panel data are analyzed. The model is based on the representation of the behavior of a subject (individual panel member) in a given cluster by means of a latent process. This latent process is decomposed into a cluster-specific component and an individual-specific component. The first component follows a first-order Markov chain, whereas the second is time-invariant and is represented by a discrete random variable. An algorithm for computing the joint distribution of the response variables is introduced. The algorithm may be used even in the presence of a large number of subjects in the same cluster. An Expectation-Maximization (EM) scheme for the maximum likelihood estimation of the model is also described together with the estimation of the Fisher information matrix on the basis of the numerical derivative of the score vector. The estimate of this matrix is used to obtain standard errors for the parameter estimates and to check the identifiability of the model and the convergence of the EM algorithm. The approach is illustrated by means of an application to a data set concerning Italian employees' illness benefits.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"46 Suppl 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Maximum Likelihood Estimation of an Extended Latent Markov Model for Clustered Binary Panel Data\",\"authors\":\"F. Bartolucci, V. Nigro\",\"doi\":\"10.2139/ssrn.967378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational aspects concerning a model for clustered binary panel data are analyzed. The model is based on the representation of the behavior of a subject (individual panel member) in a given cluster by means of a latent process. This latent process is decomposed into a cluster-specific component and an individual-specific component. The first component follows a first-order Markov chain, whereas the second is time-invariant and is represented by a discrete random variable. An algorithm for computing the joint distribution of the response variables is introduced. The algorithm may be used even in the presence of a large number of subjects in the same cluster. An Expectation-Maximization (EM) scheme for the maximum likelihood estimation of the model is also described together with the estimation of the Fisher information matrix on the basis of the numerical derivative of the score vector. The estimate of this matrix is used to obtain standard errors for the parameter estimates and to check the identifiability of the model and the convergence of the EM algorithm. The approach is illustrated by means of an application to a data set concerning Italian employees' illness benefits.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"46 Suppl 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.967378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.967378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

分析了聚类二元面板数据模型的计算问题。该模型的基础是通过潜在过程来表示给定集群中主体(单个小组成员)的行为。这一潜在过程被分解为集群特定成分和个体特定成分。第一个分量遵循一阶马尔可夫链,而第二个分量是时不变的,由离散随机变量表示。介绍了一种计算响应变量联合分布的算法。即使在同一聚类中存在大量主题时,也可以使用该算法。在分数向量的数值导数的基础上,给出了模型最大似然估计的期望最大化(EM)方案和Fisher信息矩阵的估计。利用该矩阵的估计得到参数估计的标准误差,并检验模型的可辨识性和EM算法的收敛性。通过对有关意大利雇员疾病福利的数据集的应用程序说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Estimation of an Extended Latent Markov Model for Clustered Binary Panel Data
Computational aspects concerning a model for clustered binary panel data are analyzed. The model is based on the representation of the behavior of a subject (individual panel member) in a given cluster by means of a latent process. This latent process is decomposed into a cluster-specific component and an individual-specific component. The first component follows a first-order Markov chain, whereas the second is time-invariant and is represented by a discrete random variable. An algorithm for computing the joint distribution of the response variables is introduced. The algorithm may be used even in the presence of a large number of subjects in the same cluster. An Expectation-Maximization (EM) scheme for the maximum likelihood estimation of the model is also described together with the estimation of the Fisher information matrix on the basis of the numerical derivative of the score vector. The estimate of this matrix is used to obtain standard errors for the parameter estimates and to check the identifiability of the model and the convergence of the EM algorithm. The approach is illustrated by means of an application to a data set concerning Italian employees' illness benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信