Lubotzky-Phillips-Sarnak遍历定理中的精确收敛速率和差异的一般下界

Antoine Pinochet-Lobos, C. Pittet
{"title":"Lubotzky-Phillips-Sarnak遍历定理中的精确收敛速率和差异的一般下界","authors":"Antoine Pinochet-Lobos, C. Pittet","doi":"10.4171/lem/1003","DOIUrl":null,"url":null,"abstract":"We compute exact convergence rates in von Neumann type ergodic theorems when the acting group of measure preserving transformations is free and the means are taken over spheres or over balls defined by a word metric. Relying on the upper bounds on the spectra of Koopman operators deduced by Lubozky, Phillips, and Sarnak from Deligne's work on the Weil conjecture, we compute the exact convergence rate for the free groups (of rank $(p+1)/2$ where $p\\equiv 1\\mod 4$ is prime) of isometries of the round sphere defined by Lipschitz quaternions. We also show that any finite rank free group of automorphisms of the torus realizes the lowest possible discrepancy and prove a matching upper bound on the convergence rate.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The exact convergence rate in the ergodic theorem of Lubotzky–Phillips–Sarnak and a universal lower bound on discrepancies\",\"authors\":\"Antoine Pinochet-Lobos, C. Pittet\",\"doi\":\"10.4171/lem/1003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute exact convergence rates in von Neumann type ergodic theorems when the acting group of measure preserving transformations is free and the means are taken over spheres or over balls defined by a word metric. Relying on the upper bounds on the spectra of Koopman operators deduced by Lubozky, Phillips, and Sarnak from Deligne's work on the Weil conjecture, we compute the exact convergence rate for the free groups (of rank $(p+1)/2$ where $p\\\\equiv 1\\\\mod 4$ is prime) of isometries of the round sphere defined by Lipschitz quaternions. We also show that any finite rank free group of automorphisms of the torus realizes the lowest possible discrepancy and prove a matching upper bound on the convergence rate.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当保持测度变换的作用群是自由的,并且均值取于球或由一个词度量定义的球时,我们计算了von Neumann型遍历定理中的精确收敛速率。根据Lubozky, Phillips和Sarnak从Deligne关于Weil猜想的工作中推导出的Koopman算子谱的上界,我们计算了由Lipschitz四元数定义的圆球面等距的自由群(秩$(p+1)/2$,其中$p\equiv 1\mod 4$是素数)的精确收敛速率。我们还证明了环面的任何有限秩自由自同构群实现了最小可能的差异,并证明了收敛速率的匹配上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exact convergence rate in the ergodic theorem of Lubotzky–Phillips–Sarnak and a universal lower bound on discrepancies
We compute exact convergence rates in von Neumann type ergodic theorems when the acting group of measure preserving transformations is free and the means are taken over spheres or over balls defined by a word metric. Relying on the upper bounds on the spectra of Koopman operators deduced by Lubozky, Phillips, and Sarnak from Deligne's work on the Weil conjecture, we compute the exact convergence rate for the free groups (of rank $(p+1)/2$ where $p\equiv 1\mod 4$ is prime) of isometries of the round sphere defined by Lipschitz quaternions. We also show that any finite rank free group of automorphisms of the torus realizes the lowest possible discrepancy and prove a matching upper bound on the convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信