{"title":"Bernstein高斯向量表征的稳定性及软倍增论证","authors":"Mohammad Mahdi Mahvari, G. Kramer","doi":"10.1109/ITW55543.2023.10161689","DOIUrl":null,"url":null,"abstract":"Stability properties of Bernstein’s characterization of Gaussian vectors are derived. Stability leads to a soft doubling argument through which one can prove capacity theorems without requiring the existence of capacity-achieving distributions.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Bernstein’s Characterization of Gaussian Vectors and a Soft Doubling Argument\",\"authors\":\"Mohammad Mahdi Mahvari, G. Kramer\",\"doi\":\"10.1109/ITW55543.2023.10161689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability properties of Bernstein’s characterization of Gaussian vectors are derived. Stability leads to a soft doubling argument through which one can prove capacity theorems without requiring the existence of capacity-achieving distributions.\",\"PeriodicalId\":439800,\"journal\":{\"name\":\"2023 IEEE Information Theory Workshop (ITW)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW55543.2023.10161689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of Bernstein’s Characterization of Gaussian Vectors and a Soft Doubling Argument
Stability properties of Bernstein’s characterization of Gaussian vectors are derived. Stability leads to a soft doubling argument through which one can prove capacity theorems without requiring the existence of capacity-achieving distributions.