用聚类结构检验数据中模式的显著性

Niko Vuokko, P. Kaski
{"title":"用聚类结构检验数据中模式的显著性","authors":"Niko Vuokko, P. Kaski","doi":"10.1109/ICDM.2010.61","DOIUrl":null,"url":null,"abstract":"Clustering is one of the basic operations in data analysis, and the cluster structure of a dataset often has a marked effect on observed patterns in data. Testing whether a data mining result is implied by the cluster structure can give substantial information on the formation of the dataset. We propose a new method for empirically testing the statistical significance of patterns in real-valued data in relation to the cluster structure. The method relies on principal component analysis and is based on the general idea of decomposing the data for the purpose of isolating the null model. We evaluate the performance of the method and the information it provides on various real datasets. Our results show that the proposed method is robust and provides nontrivial information about the origin of patterns in data, such as the source of classification accuracy and the observed correlations between attributes.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Testing the Significance of Patterns in Data with Cluster Structure\",\"authors\":\"Niko Vuokko, P. Kaski\",\"doi\":\"10.1109/ICDM.2010.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is one of the basic operations in data analysis, and the cluster structure of a dataset often has a marked effect on observed patterns in data. Testing whether a data mining result is implied by the cluster structure can give substantial information on the formation of the dataset. We propose a new method for empirically testing the statistical significance of patterns in real-valued data in relation to the cluster structure. The method relies on principal component analysis and is based on the general idea of decomposing the data for the purpose of isolating the null model. We evaluate the performance of the method and the information it provides on various real datasets. Our results show that the proposed method is robust and provides nontrivial information about the origin of patterns in data, such as the source of classification accuracy and the observed correlations between attributes.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

聚类是数据分析的基本操作之一,数据集的聚类结构往往会对数据中观察到的模式产生显著影响。测试数据挖掘结果是否隐含在聚类结构中,可以提供关于数据集形成的实质性信息。我们提出了一种新的方法来实证检验实值数据中与聚类结构相关的模式的统计显著性。该方法依赖于主成分分析,并基于分解数据以隔离零模型的一般思想。我们评估了该方法的性能及其在各种真实数据集上提供的信息。结果表明,该方法具有较强的鲁棒性,并提供了关于数据中模式起源的重要信息,如分类精度的来源和观察到的属性之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the Significance of Patterns in Data with Cluster Structure
Clustering is one of the basic operations in data analysis, and the cluster structure of a dataset often has a marked effect on observed patterns in data. Testing whether a data mining result is implied by the cluster structure can give substantial information on the formation of the dataset. We propose a new method for empirically testing the statistical significance of patterns in real-valued data in relation to the cluster structure. The method relies on principal component analysis and is based on the general idea of decomposing the data for the purpose of isolating the null model. We evaluate the performance of the method and the information it provides on various real datasets. Our results show that the proposed method is robust and provides nontrivial information about the origin of patterns in data, such as the source of classification accuracy and the observed correlations between attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信