{"title":"基于深度学习和自适应粒子滤波的夜间融合图像目标跟踪方法","authors":"Xiaoyan Qian, Lei Han, Yanlin Zhang, M. Ding","doi":"10.1109/PIC.2017.8359530","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"48 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An object tracking method using deep learning and adaptive particle filter for night fusion image\",\"authors\":\"Xiaoyan Qian, Lei Han, Yanlin Zhang, M. Ding\",\"doi\":\"10.1109/PIC.2017.8359530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.\",\"PeriodicalId\":370588,\"journal\":{\"name\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"48 50\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2017.8359530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An object tracking method using deep learning and adaptive particle filter for night fusion image
In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.