生物序列局部多重比对的硬度结果

T. Akutsu, Hiroki Arimura, S. Shimozono
{"title":"生物序列局部多重比对的硬度结果","authors":"T. Akutsu, Hiroki Arimura, S. Shimozono","doi":"10.2197/IPSJDC.3.174","DOIUrl":null,"url":null,"abstract":"This paper studies the local multiple alignment problem, which is, given protein or DNA sequences, to locate a region (i.e., a substring) of fixed length from each sequence so that the score determined from the set of regions is optimized. We consider the following scoring schemes: the relative entropy score (i.e., average information content), the sum-of-pairs score and a relative entropy-like score introduced by Li, et al. We prove that multiple local alignment is NP-hard under each of these scoring schemes. In particular, we prove that multiple local alignment is APX-hard under relative entropy scoring. It implies that unless P =NP there is no polynomial time algorithm whose worst case approximation error can be arbitrarily specified(precisely, a polynomial time approximation scheme). Several related theoretical results are also provided.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hardness Results on Local Multiple Alignment of Biological Sequences\",\"authors\":\"T. Akutsu, Hiroki Arimura, S. Shimozono\",\"doi\":\"10.2197/IPSJDC.3.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the local multiple alignment problem, which is, given protein or DNA sequences, to locate a region (i.e., a substring) of fixed length from each sequence so that the score determined from the set of regions is optimized. We consider the following scoring schemes: the relative entropy score (i.e., average information content), the sum-of-pairs score and a relative entropy-like score introduced by Li, et al. We prove that multiple local alignment is NP-hard under each of these scoring schemes. In particular, we prove that multiple local alignment is APX-hard under relative entropy scoring. It implies that unless P =NP there is no polynomial time algorithm whose worst case approximation error can be arbitrarily specified(precisely, a polynomial time approximation scheme). Several related theoretical results are also provided.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.3.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了局部多重比对问题,即给定蛋白质或DNA序列,从每个序列中定位一个固定长度的区域(即子串),从而优化从区域集确定的分数。我们考虑了以下评分方案:相对熵评分(即平均信息含量)、对和评分和由Li等人引入的类相对熵评分。我们证明了在每一种计分方案下,多局部对齐都是np困难的。特别是在相对熵评分下,我们证明了多局部对齐是APX-hard的。这意味着除非P =NP,否则不存在最坏情况近似误差可以任意指定的多项式时间算法(准确地说,是多项式时间近似方案)。并给出了几个相关的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardness Results on Local Multiple Alignment of Biological Sequences
This paper studies the local multiple alignment problem, which is, given protein or DNA sequences, to locate a region (i.e., a substring) of fixed length from each sequence so that the score determined from the set of regions is optimized. We consider the following scoring schemes: the relative entropy score (i.e., average information content), the sum-of-pairs score and a relative entropy-like score introduced by Li, et al. We prove that multiple local alignment is NP-hard under each of these scoring schemes. In particular, we prove that multiple local alignment is APX-hard under relative entropy scoring. It implies that unless P =NP there is no polynomial time algorithm whose worst case approximation error can be arbitrarily specified(precisely, a polynomial time approximation scheme). Several related theoretical results are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信