片断的动态Möebious映射和一些应用程序。第一部分

Ž. Pavićević, Jela Šušić
{"title":"片断的动态Möebious映射和一些应用程序。第一部分","authors":"Ž. Pavićević, Jela Šušić","doi":"10.20948/MATHMONTIS-2019-46-4","DOIUrl":null,"url":null,"abstract":"In this article we prove that a continuous mapping on a simply-connected domain of the extended complex plane, which is normal with respect to the cycle group of all conformal automorphisms of the domain with a fixed attractive point, which belongs to the domain is a constant function. Applying this result we obtain new proofs of the classical Theorem of Liouville and little Picard Theorem for holomorphic, meromorphic and harmonic functions in complex plane. We also prove some results from the dynamic of Möbius mappings.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fragments of dynamic of Möebious mappings and some applications. Part I\",\"authors\":\"Ž. Pavićević, Jela Šušić\",\"doi\":\"10.20948/MATHMONTIS-2019-46-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove that a continuous mapping on a simply-connected domain of the extended complex plane, which is normal with respect to the cycle group of all conformal automorphisms of the domain with a fixed attractive point, which belongs to the domain is a constant function. Applying this result we obtain new proofs of the classical Theorem of Liouville and little Picard Theorem for holomorphic, meromorphic and harmonic functions in complex plane. We also prove some results from the dynamic of Möbius mappings.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/MATHMONTIS-2019-46-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/MATHMONTIS-2019-46-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了扩展复平面上的单连通域上的一个连续映射是一个常数函数,该映射相对于该域上所有共形自同构的环群是法向的,且该域上有一个固定的吸引点。应用这一结果,得到了复平面上全纯、亚纯和调和函数的经典Liouville定理和小皮卡德定理的新证明。我们还证明了Möbius映射的一些动态结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fragments of dynamic of Möebious mappings and some applications. Part I
In this article we prove that a continuous mapping on a simply-connected domain of the extended complex plane, which is normal with respect to the cycle group of all conformal automorphisms of the domain with a fixed attractive point, which belongs to the domain is a constant function. Applying this result we obtain new proofs of the classical Theorem of Liouville and little Picard Theorem for holomorphic, meromorphic and harmonic functions in complex plane. We also prove some results from the dynamic of Möbius mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信