基于广义回归神经网络的纱线不匀预测

Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu
{"title":"基于广义回归神经网络的纱线不匀预测","authors":"Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu","doi":"10.53106/160792642023052403020","DOIUrl":null,"url":null,"abstract":"\n This study aimed to propose a method to predict yarn unevenness grounded on the generalized regression neural network and traditional neural network model to further improve the prediction accuracy. The yarn unevenness model was constructed. Under this model, a three-layer neural network, a four-layer neural network, a five-layer neural network, and a generalized regression neural network were designed. Finally, Python was used for training and simulation. The training parameters and the three network models data were made consistent to ensure the comparability of the results. The results showed that using the yarn unevenness model, the average relative error of the four-layer neural network to cut down 0.87% compared with that of the three-layer neural network. Compared with the five-layer neural network, the four-layer neural network performance was not much different, but the running speed was increased by 46.05%. Compared with the four-layer neural network, the average relative error of the generalized regression neural network was reduced by 0.57%, the mean square error was reduced by 0.98%, he root mean square error was reduced by 4.76%, and the running speed was increased by 74.70%.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yarn Unevenness Prediction using Generalized Regression Neural Network\",\"authors\":\"Bao-Wei Zhang Bao-Wei Zhang, Lin Xu Bao-Wei Zhang, Yong-Hua Wang Lin Xu\",\"doi\":\"10.53106/160792642023052403020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study aimed to propose a method to predict yarn unevenness grounded on the generalized regression neural network and traditional neural network model to further improve the prediction accuracy. The yarn unevenness model was constructed. Under this model, a three-layer neural network, a four-layer neural network, a five-layer neural network, and a generalized regression neural network were designed. Finally, Python was used for training and simulation. The training parameters and the three network models data were made consistent to ensure the comparability of the results. The results showed that using the yarn unevenness model, the average relative error of the four-layer neural network to cut down 0.87% compared with that of the three-layer neural network. Compared with the five-layer neural network, the four-layer neural network performance was not much different, but the running speed was increased by 46.05%. Compared with the four-layer neural network, the average relative error of the generalized regression neural network was reduced by 0.57%, the mean square error was reduced by 0.98%, he root mean square error was reduced by 4.76%, and the running speed was increased by 74.70%.\\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023052403020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023052403020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提出一种基于广义回归神经网络和传统神经网络模型的纱线不匀预测方法,以进一步提高纱线不匀的预测精度。建立了纱线不匀模型。在此模型下,设计了三层神经网络、四层神经网络、五层神经网络和广义回归神经网络。最后,使用Python进行训练和仿真。训练参数与三种网络模型数据保持一致,以保证结果的可比性。结果表明,利用纱线不匀度模型,四层神经网络的平均相对误差比三层神经网络的平均相对误差降低0.87%。与五层神经网络相比,四层神经网络性能差异不大,但运行速度提高了46.05%。与四层神经网络相比,广义回归神经网络的平均相对误差减小0.57%,均方误差减小0.98%,均方根误差减小4.76%,运行速度提高74.70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yarn Unevenness Prediction using Generalized Regression Neural Network
This study aimed to propose a method to predict yarn unevenness grounded on the generalized regression neural network and traditional neural network model to further improve the prediction accuracy. The yarn unevenness model was constructed. Under this model, a three-layer neural network, a four-layer neural network, a five-layer neural network, and a generalized regression neural network were designed. Finally, Python was used for training and simulation. The training parameters and the three network models data were made consistent to ensure the comparability of the results. The results showed that using the yarn unevenness model, the average relative error of the four-layer neural network to cut down 0.87% compared with that of the three-layer neural network. Compared with the five-layer neural network, the four-layer neural network performance was not much different, but the running speed was increased by 46.05%. Compared with the four-layer neural network, the average relative error of the generalized regression neural network was reduced by 0.57%, the mean square error was reduced by 0.98%, he root mean square error was reduced by 4.76%, and the running speed was increased by 74.70%.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信