M. Aneesh, J. A. Ansari, A. Singh, K. Kamakshi, S. Verma
{"title":"矩形微带贴片天线的RBF神经网络建模","authors":"M. Aneesh, J. A. Ansari, A. Singh, K. Kamakshi, S. Verma","doi":"10.1109/ICCCT.2012.56","DOIUrl":null,"url":null,"abstract":"In this paper, a design procedure has been proposed for rectangular micro strip patch antenna using artificial neural network, which has been demonstrated using radial basis function neural network. The Neural model was analyzed for 20 sets of input output parameters. The radial basis function outputs are optimized by variation of spread constant and number of neurons. By applying this model we can reduce output error as well as time delay of system. The testing of output of neural model is found in good agreement with theoretical values.","PeriodicalId":235770,"journal":{"name":"2012 Third International Conference on Computer and Communication Technology","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"RBF Neural Network Modeling of Rectangular Microstrip Patch Antenna\",\"authors\":\"M. Aneesh, J. A. Ansari, A. Singh, K. Kamakshi, S. Verma\",\"doi\":\"10.1109/ICCCT.2012.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a design procedure has been proposed for rectangular micro strip patch antenna using artificial neural network, which has been demonstrated using radial basis function neural network. The Neural model was analyzed for 20 sets of input output parameters. The radial basis function outputs are optimized by variation of spread constant and number of neurons. By applying this model we can reduce output error as well as time delay of system. The testing of output of neural model is found in good agreement with theoretical values.\",\"PeriodicalId\":235770,\"journal\":{\"name\":\"2012 Third International Conference on Computer and Communication Technology\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Computer and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT.2012.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Computer and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT.2012.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RBF Neural Network Modeling of Rectangular Microstrip Patch Antenna
In this paper, a design procedure has been proposed for rectangular micro strip patch antenna using artificial neural network, which has been demonstrated using radial basis function neural network. The Neural model was analyzed for 20 sets of input output parameters. The radial basis function outputs are optimized by variation of spread constant and number of neurons. By applying this model we can reduce output error as well as time delay of system. The testing of output of neural model is found in good agreement with theoretical values.