Kuan-Hsun Chen, Mario Gunzel, Georg von der Bruggen, Jian-Jia Chen
{"title":"概率时间保证的临界瞬间:反驳和重新审视","authors":"Kuan-Hsun Chen, Mario Gunzel, Georg von der Bruggen, Jian-Jia Chen","doi":"10.1109/RTSS55097.2022.00022","DOIUrl":null,"url":null,"abstract":"In soft real-time systems, tasks may occasionally miss their deadlines. This possibility has triggered research on probabilistic timing analysis for the execution time of a single program and probabilistic response time analysis of concurrently executed tasks. Under fixed-priority preemptive uniprocessor scheduling, it was shown that the classical critical instant theorem (for deriving the worst-case schedulability or response time) by Liu and Layland (in JACM 1973) can be applied to analyze the worst-case deadline failure probability (WCDFP) and the worst-case response time exceedance probability (WCRTEP). In this work, we present a counterexample for this result, showing that the WCDFP and WCRTEP derived by the classical critical instant theorem is unsound. We further provide two sound methods: one is to account for one additional carry-in job of a higher-priority task and another is to sample and inflate the execution time of certain jobs without adding one additional carry-in job. We show that these two methods do not dominate each other and, in the evaluation, apply them to two well-known approaches based on direct convolution and Chernoff bounds.","PeriodicalId":202402,"journal":{"name":"2022 IEEE Real-Time Systems Symposium (RTSS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Critical Instant for Probabilistic Timing Guarantees: Refuted and Revisited\",\"authors\":\"Kuan-Hsun Chen, Mario Gunzel, Georg von der Bruggen, Jian-Jia Chen\",\"doi\":\"10.1109/RTSS55097.2022.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In soft real-time systems, tasks may occasionally miss their deadlines. This possibility has triggered research on probabilistic timing analysis for the execution time of a single program and probabilistic response time analysis of concurrently executed tasks. Under fixed-priority preemptive uniprocessor scheduling, it was shown that the classical critical instant theorem (for deriving the worst-case schedulability or response time) by Liu and Layland (in JACM 1973) can be applied to analyze the worst-case deadline failure probability (WCDFP) and the worst-case response time exceedance probability (WCRTEP). In this work, we present a counterexample for this result, showing that the WCDFP and WCRTEP derived by the classical critical instant theorem is unsound. We further provide two sound methods: one is to account for one additional carry-in job of a higher-priority task and another is to sample and inflate the execution time of certain jobs without adding one additional carry-in job. We show that these two methods do not dominate each other and, in the evaluation, apply them to two well-known approaches based on direct convolution and Chernoff bounds.\",\"PeriodicalId\":202402,\"journal\":{\"name\":\"2022 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS55097.2022.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS55097.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Instant for Probabilistic Timing Guarantees: Refuted and Revisited
In soft real-time systems, tasks may occasionally miss their deadlines. This possibility has triggered research on probabilistic timing analysis for the execution time of a single program and probabilistic response time analysis of concurrently executed tasks. Under fixed-priority preemptive uniprocessor scheduling, it was shown that the classical critical instant theorem (for deriving the worst-case schedulability or response time) by Liu and Layland (in JACM 1973) can be applied to analyze the worst-case deadline failure probability (WCDFP) and the worst-case response time exceedance probability (WCRTEP). In this work, we present a counterexample for this result, showing that the WCDFP and WCRTEP derived by the classical critical instant theorem is unsound. We further provide two sound methods: one is to account for one additional carry-in job of a higher-priority task and another is to sample and inflate the execution time of certain jobs without adding one additional carry-in job. We show that these two methods do not dominate each other and, in the evaluation, apply them to two well-known approaches based on direct convolution and Chernoff bounds.