Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère
{"title":"虚拟现实中6 DoF视频的全方位立体图像实时全景深度图","authors":"Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère","doi":"10.1109/VR.2019.8798016","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.","PeriodicalId":315935,"journal":{"name":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Real-Time Panoramic Depth Maps from Omni-directional Stereo Images for 6 DoF Videos in Virtual Reality\",\"authors\":\"Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère\",\"doi\":\"10.1109/VR.2019.8798016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.\",\"PeriodicalId\":315935,\"journal\":{\"name\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2019.8798016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2019.8798016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Panoramic Depth Maps from Omni-directional Stereo Images for 6 DoF Videos in Virtual Reality
In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.