虚拟现实中6 DoF视频的全方位立体图像实时全景深度图

Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère
{"title":"虚拟现实中6 DoF视频的全方位立体图像实时全景深度图","authors":"Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère","doi":"10.1109/VR.2019.8798016","DOIUrl":null,"url":null,"abstract":"In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.","PeriodicalId":315935,"journal":{"name":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Real-Time Panoramic Depth Maps from Omni-directional Stereo Images for 6 DoF Videos in Virtual Reality\",\"authors\":\"Po Kong Lai, Shuang Xie, J. Lang, Robert Laqaruère\",\"doi\":\"10.1109/VR.2019.8798016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.\",\"PeriodicalId\":315935,\"journal\":{\"name\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2019.8798016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2019.8798016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在本文中,我们提出了一种使用卷积神经网络(cnn)从全向立体(ODS)图像中提取6自由度全景视频的方法。更具体地说,我们使用cnn从ODS图像实时生成全景深度图。这些深度图将允许全景图像的重新投影,从而在虚拟现实(VR)中为观看者提供6自由度。由于全景图像的边界必须接触才能包住观看者,我们引入了一个边界加权损失函数以及专门为全景图像量身定制的新的误差度量。我们通过实验证明,使用我们的边界加权损失函数进行训练可以通过基准跳过连接的编码器-解码器风格网络以及其他最先进的方法在单声道和立体图像的深度图估计中提高性能。最后,还演示了使用真实世界数据的VR实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Panoramic Depth Maps from Omni-directional Stereo Images for 6 DoF Videos in Virtual Reality
In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信