在数据丰富的环境中进行实际数据处理的Voronoi表示

D. Breitkreutz, Ickjai Lee
{"title":"在数据丰富的环境中进行实际数据处理的Voronoi表示","authors":"D. Breitkreutz, Ickjai Lee","doi":"10.1109/ISI.2009.5137291","DOIUrl":null,"url":null,"abstract":"Privacy and data explosion issues are major concerns in intelligence and security informatics. An areal data representation is a popular way to overcome these two issues. As data grows at an unprecedented rate, there still needs an improvement in area data representations to be more scalable. This paper determines the potential for an alternative areal representation that can offer performance benefits over traditional methods for use within data-rich environments. From the experiments performed, improvements are promising, especially within time-critical applications that need to consider large amounts of data quickly.","PeriodicalId":210911,"journal":{"name":"2009 IEEE International Conference on Intelligence and Security Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voronoi representation for areal data processing in data-rich environments\",\"authors\":\"D. Breitkreutz, Ickjai Lee\",\"doi\":\"10.1109/ISI.2009.5137291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy and data explosion issues are major concerns in intelligence and security informatics. An areal data representation is a popular way to overcome these two issues. As data grows at an unprecedented rate, there still needs an improvement in area data representations to be more scalable. This paper determines the potential for an alternative areal representation that can offer performance benefits over traditional methods for use within data-rich environments. From the experiments performed, improvements are promising, especially within time-critical applications that need to consider large amounts of data quickly.\",\"PeriodicalId\":210911,\"journal\":{\"name\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2009.5137291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2009.5137291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐私和数据爆炸问题是情报和安全信息学的主要关注点。实景数据表示是克服这两个问题的常用方法。随着数据以前所未有的速度增长,区域数据表示仍然需要改进,以提高可扩展性。本文确定了在数据丰富的环境中使用一种可以提供优于传统方法的替代区域表示的潜力。从所进行的实验来看,改进是有希望的,特别是在需要快速考虑大量数据的时间关键应用程序中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voronoi representation for areal data processing in data-rich environments
Privacy and data explosion issues are major concerns in intelligence and security informatics. An areal data representation is a popular way to overcome these two issues. As data grows at an unprecedented rate, there still needs an improvement in area data representations to be more scalable. This paper determines the potential for an alternative areal representation that can offer performance benefits over traditional methods for use within data-rich environments. From the experiments performed, improvements are promising, especially within time-critical applications that need to consider large amounts of data quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信