{"title":"基于模糊规则的高斯回归卫星图像预测","authors":"N. Verma, N. Pal","doi":"10.1109/AIPR.2010.5759679","DOIUrl":null,"url":null,"abstract":"We present a novel approach for prediction of satellite image frame that uses a fuzzy rule based framework. The input-output membership functions for the premise and consequent parts of the rules are derived using a Gaussian Mixture Model (GMM). The weights of the fuzzy rules are represented as the prior probabilities of the respective Gaussian components. For obtaining the predictive fuzzy model, the GMM parameters are estimated via EM algorithm using a spatiotemporal representation of image sequence or video clips. Minimum Description Length (MDL) criterion is used to obtain a suitable predictive fuzzy model. The resulting model is successfully applied on a sequence of satellite images of tropical cyclone, Nargis, that made landfall in Myanmar on May 2, 2008. The quality of the predicted image is assessed using two criteria. The proposed approach is found to predict image frame successfully.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Prediction of satellite images using fuzzy rule based Gaussian regression\",\"authors\":\"N. Verma, N. Pal\",\"doi\":\"10.1109/AIPR.2010.5759679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for prediction of satellite image frame that uses a fuzzy rule based framework. The input-output membership functions for the premise and consequent parts of the rules are derived using a Gaussian Mixture Model (GMM). The weights of the fuzzy rules are represented as the prior probabilities of the respective Gaussian components. For obtaining the predictive fuzzy model, the GMM parameters are estimated via EM algorithm using a spatiotemporal representation of image sequence or video clips. Minimum Description Length (MDL) criterion is used to obtain a suitable predictive fuzzy model. The resulting model is successfully applied on a sequence of satellite images of tropical cyclone, Nargis, that made landfall in Myanmar on May 2, 2008. The quality of the predicted image is assessed using two criteria. The proposed approach is found to predict image frame successfully.\",\"PeriodicalId\":128378,\"journal\":{\"name\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2010.5759679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of satellite images using fuzzy rule based Gaussian regression
We present a novel approach for prediction of satellite image frame that uses a fuzzy rule based framework. The input-output membership functions for the premise and consequent parts of the rules are derived using a Gaussian Mixture Model (GMM). The weights of the fuzzy rules are represented as the prior probabilities of the respective Gaussian components. For obtaining the predictive fuzzy model, the GMM parameters are estimated via EM algorithm using a spatiotemporal representation of image sequence or video clips. Minimum Description Length (MDL) criterion is used to obtain a suitable predictive fuzzy model. The resulting model is successfully applied on a sequence of satellite images of tropical cyclone, Nargis, that made landfall in Myanmar on May 2, 2008. The quality of the predicted image is assessed using two criteria. The proposed approach is found to predict image frame successfully.