支持V2V移动边缘计算的智能交通DQN

Xiaoming Guo, Xiao Hong
{"title":"支持V2V移动边缘计算的智能交通DQN","authors":"Xiaoming Guo, Xiao Hong","doi":"10.1109/SMARTCOMP58114.2023.00048","DOIUrl":null,"url":null,"abstract":"The paper introduces a deep reinforcement learning model for a special scenario in future smart transportation. The scenario describes a mobile edge computing platform hosted by a group of self-organized connected vehicles for sharing computation resources. The presented DQN model is to solve the trade-offs between the computing capability and the traffic state. Results show the existence of the trade-off and the need for future research in a few areas.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DQN for Smart Transportation Supporting V2V Mobile Edge Computing\",\"authors\":\"Xiaoming Guo, Xiao Hong\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a deep reinforcement learning model for a special scenario in future smart transportation. The scenario describes a mobile edge computing platform hosted by a group of self-organized connected vehicles for sharing computation resources. The presented DQN model is to solve the trade-offs between the computing capability and the traffic state. Results show the existence of the trade-off and the need for future research in a few areas.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种面向未来智能交通特殊场景的深度强化学习模型。该场景描述了一个移动边缘计算平台,该平台由一组自组织的互联车辆托管,用于共享计算资源。提出的DQN模型是为了解决计算能力和流量状态之间的权衡问题。结果表明这种权衡的存在,需要在一些领域进行进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DQN for Smart Transportation Supporting V2V Mobile Edge Computing
The paper introduces a deep reinforcement learning model for a special scenario in future smart transportation. The scenario describes a mobile edge computing platform hosted by a group of self-organized connected vehicles for sharing computation resources. The presented DQN model is to solve the trade-offs between the computing capability and the traffic state. Results show the existence of the trade-off and the need for future research in a few areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信