Luka Lednicki, G. Bag, K. Landernäs, Niclas Ericsson, Larisa Rizvanovic, Kristian Sandström, J. Torsner, C. Curescu, B. Skubic
{"title":"基于5G LTE的工业物联网分布式云实验","authors":"Luka Lednicki, G. Bag, K. Landernäs, Niclas Ericsson, Larisa Rizvanovic, Kristian Sandström, J. Torsner, C. Curescu, B. Skubic","doi":"10.1109/WFCS.2019.8758014","DOIUrl":null,"url":null,"abstract":"With the evolution of 5G it is envisioned that industrial applications with different requirements on latency and availability can be offloaded to a distributed cloud infrastructure. For example, some applications with stringent timing requirements can be hosted at the edge of the mobile network, closer to the control hardware, whereas some applications with relaxed timing requirements can be hosted in a cloud located geographically further away.This paper presents a feasibility study of hosting control applications based on OPC UA communication in a distributed cloud with LTE connectivity to the control hardware. The study includes measurements of communication round-trip time and availability of the network comparing cases where the application is hosted at a local or regional cloud. The results indicate that it is feasible to deploy industrial applications in a distributed cloud with timing requirements in the order of 100ms.","PeriodicalId":373657,"journal":{"name":"2019 15th IEEE International Workshop on Factory Communication Systems (WFCS)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Industrial IoT with Distributed Cloud Experiments using 5G LTE\",\"authors\":\"Luka Lednicki, G. Bag, K. Landernäs, Niclas Ericsson, Larisa Rizvanovic, Kristian Sandström, J. Torsner, C. Curescu, B. Skubic\",\"doi\":\"10.1109/WFCS.2019.8758014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the evolution of 5G it is envisioned that industrial applications with different requirements on latency and availability can be offloaded to a distributed cloud infrastructure. For example, some applications with stringent timing requirements can be hosted at the edge of the mobile network, closer to the control hardware, whereas some applications with relaxed timing requirements can be hosted in a cloud located geographically further away.This paper presents a feasibility study of hosting control applications based on OPC UA communication in a distributed cloud with LTE connectivity to the control hardware. The study includes measurements of communication round-trip time and availability of the network comparing cases where the application is hosted at a local or regional cloud. The results indicate that it is feasible to deploy industrial applications in a distributed cloud with timing requirements in the order of 100ms.\",\"PeriodicalId\":373657,\"journal\":{\"name\":\"2019 15th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"volume\":\"250 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th IEEE International Workshop on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS.2019.8758014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th IEEE International Workshop on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2019.8758014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Industrial IoT with Distributed Cloud Experiments using 5G LTE
With the evolution of 5G it is envisioned that industrial applications with different requirements on latency and availability can be offloaded to a distributed cloud infrastructure. For example, some applications with stringent timing requirements can be hosted at the edge of the mobile network, closer to the control hardware, whereas some applications with relaxed timing requirements can be hosted in a cloud located geographically further away.This paper presents a feasibility study of hosting control applications based on OPC UA communication in a distributed cloud with LTE connectivity to the control hardware. The study includes measurements of communication round-trip time and availability of the network comparing cases where the application is hosted at a local or regional cloud. The results indicate that it is feasible to deploy industrial applications in a distributed cloud with timing requirements in the order of 100ms.