面向人机交互识别的交互式身体部位对比挖掘

Yanli Ji, Guo Ye, Hong Cheng
{"title":"面向人机交互识别的交互式身体部位对比挖掘","authors":"Yanli Ji, Guo Ye, Hong Cheng","doi":"10.1109/ICMEW.2014.6890714","DOIUrl":null,"url":null,"abstract":"The recognition of multi-person interactions still remains a challenge because of the mutual occlusion and redundant poses. We propose an interactive body part contrast mining method based on joints for human interaction recognition. To efficiently describe interactions, we propose an interactive body part model which connects the interactive limbs of different participants to represent the relationship of interactive body parts. Then we calculate the spatial-temporal joint features for 8 interactive limb pairs in a short frame set for motion description (poselets). Employing contrast mining, we determine the essential interactive pairs and poselets for each interaction class to delete the redundant action information, and use these poselets to generate a poselet dictionary for interaction representation following bag-of-words. SVM with RBF kernel is adopted for recognition. We evaluate the proposed algorithm on two databases, the SBU interaction database and a newly collected RGBD-skeleton interaction database. Experiment results indicate the effectiveness of the proposed algorithm. The recognition accuracy reaches 85.4% on our interaction database, and 86.8% on SBU interaction database, 6% higher than the method in [1].","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Interactive body part contrast mining for human interaction recognition\",\"authors\":\"Yanli Ji, Guo Ye, Hong Cheng\",\"doi\":\"10.1109/ICMEW.2014.6890714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recognition of multi-person interactions still remains a challenge because of the mutual occlusion and redundant poses. We propose an interactive body part contrast mining method based on joints for human interaction recognition. To efficiently describe interactions, we propose an interactive body part model which connects the interactive limbs of different participants to represent the relationship of interactive body parts. Then we calculate the spatial-temporal joint features for 8 interactive limb pairs in a short frame set for motion description (poselets). Employing contrast mining, we determine the essential interactive pairs and poselets for each interaction class to delete the redundant action information, and use these poselets to generate a poselet dictionary for interaction representation following bag-of-words. SVM with RBF kernel is adopted for recognition. We evaluate the proposed algorithm on two databases, the SBU interaction database and a newly collected RGBD-skeleton interaction database. Experiment results indicate the effectiveness of the proposed algorithm. The recognition accuracy reaches 85.4% on our interaction database, and 86.8% on SBU interaction database, 6% higher than the method in [1].\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

摘要

由于相互遮挡和姿势冗余,对多人交互的识别仍然是一个挑战。提出了一种基于关节的交互式身体部位对比挖掘方法,用于人体交互识别。为了有效地描述交互,我们提出了一种交互身体部位模型,该模型将不同参与者的交互肢体连接起来,表示交互身体部位之间的关系。然后在短帧集中计算8对交互肢体的时空关节特征,用于运动描述(poselets)。采用对比挖掘的方法,为每个交互类确定必要的交互对和谓词集,删除冗余的动作信息,并利用这些谓词集生成一个谓词集字典,用于词袋之后的交互表示。采用RBF核支持向量机进行识别。我们在SBU交互数据库和新收集的RGBD-skeleton交互数据库两个数据库上对该算法进行了评估。实验结果表明了该算法的有效性。在我们的交互数据库上识别准确率达到85.4%,在SBU交互数据库上识别准确率达到86.8%,比文献[1]中的方法提高了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive body part contrast mining for human interaction recognition
The recognition of multi-person interactions still remains a challenge because of the mutual occlusion and redundant poses. We propose an interactive body part contrast mining method based on joints for human interaction recognition. To efficiently describe interactions, we propose an interactive body part model which connects the interactive limbs of different participants to represent the relationship of interactive body parts. Then we calculate the spatial-temporal joint features for 8 interactive limb pairs in a short frame set for motion description (poselets). Employing contrast mining, we determine the essential interactive pairs and poselets for each interaction class to delete the redundant action information, and use these poselets to generate a poselet dictionary for interaction representation following bag-of-words. SVM with RBF kernel is adopted for recognition. We evaluate the proposed algorithm on two databases, the SBU interaction database and a newly collected RGBD-skeleton interaction database. Experiment results indicate the effectiveness of the proposed algorithm. The recognition accuracy reaches 85.4% on our interaction database, and 86.8% on SBU interaction database, 6% higher than the method in [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信