基于区域表征的性别认同融合

S. D. Hu, Brendan Jou, Aaron Jaech, M. Savvides
{"title":"基于区域表征的性别认同融合","authors":"S. D. Hu, Brendan Jou, Aaron Jaech, M. Savvides","doi":"10.1109/IJCB.2011.6117602","DOIUrl":null,"url":null,"abstract":"Much of the current work on gender identification relies on legacy datasets of heavily controlled images with minimal facial appearance variations. As studies explore the effects of adding elements of variation into the data, they have met challenges in achieving granular statistical significance due to the limited size of their datasets. In this study, we aim to create a classification framework that is robust to non-studio, uncontrolled, real-world images. We show that the fusion of separate linear classifiers trained on smart-selected local patches achieves 90% accuracy, which is a 5% improvement over a baseline linear classifier on a straightforward pixel representation. These results are reported on our own uncontrolled database of ∼26; 700 images collected from the Web.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Fusion of region-based representations for gender identification\",\"authors\":\"S. D. Hu, Brendan Jou, Aaron Jaech, M. Savvides\",\"doi\":\"10.1109/IJCB.2011.6117602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much of the current work on gender identification relies on legacy datasets of heavily controlled images with minimal facial appearance variations. As studies explore the effects of adding elements of variation into the data, they have met challenges in achieving granular statistical significance due to the limited size of their datasets. In this study, we aim to create a classification framework that is robust to non-studio, uncontrolled, real-world images. We show that the fusion of separate linear classifiers trained on smart-selected local patches achieves 90% accuracy, which is a 5% improvement over a baseline linear classifier on a straightforward pixel representation. These results are reported on our own uncontrolled database of ∼26; 700 images collected from the Web.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

目前关于性别识别的大部分工作都依赖于遗留的数据集,这些数据集由严格控制的图像组成,面部外观变化最小。当研究探索在数据中添加变化元素的影响时,由于数据集的规模有限,他们在实现粒度统计显著性方面遇到了挑战。在这项研究中,我们的目标是创建一个对非工作室、不受控制的真实世界图像具有鲁棒性的分类框架。我们表明,在智能选择的局部补丁上训练的独立线性分类器的融合达到了90%的准确率,这比直接像素表示的基线线性分类器提高了5%。这些结果是在我们自己的非受控数据库中报告的~ 26;从网上收集的700张图片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of region-based representations for gender identification
Much of the current work on gender identification relies on legacy datasets of heavily controlled images with minimal facial appearance variations. As studies explore the effects of adding elements of variation into the data, they have met challenges in achieving granular statistical significance due to the limited size of their datasets. In this study, we aim to create a classification framework that is robust to non-studio, uncontrolled, real-world images. We show that the fusion of separate linear classifiers trained on smart-selected local patches achieves 90% accuracy, which is a 5% improvement over a baseline linear classifier on a straightforward pixel representation. These results are reported on our own uncontrolled database of ∼26; 700 images collected from the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信