{"title":"激光织构减少受限流动中水力摩擦:实验与理论验证","authors":"Avinash Kumar, S. Datta, D. Kalyanasundaram","doi":"10.1115/ICNMM2018-7740","DOIUrl":null,"url":null,"abstract":"Hydraulic friction reduction in a microchannel due to superhydrophobic texturing of its walls was studied theoretically and experimentally. A modified Poiseuille equation formulated from an earlier-established semi-analytical approach to model texturing of slip lengths and the “gas cushion model” was used to predict the hydraulic conductance of a microchannel. An experimental setup with a microfluidic flow cell consisting of syringe pump, pressure manometer and tubing measured the pressure drop at different flow rates through a microchannel. The top and bottom walls of the microchannel was textured with micro-pits using nanosecond pulsed laser on the titanium alloy Ti6Al4V. A very high contact angle was observed on the textured surfaces suggesting entrapped gas bubbles. Liquid slippage leading to reduced hydraulic friction is attributable to the bubbles. The pressure-flow rate characteristics of the microchannels confirm friction reduction and also demonstrate a reasonable agreement with the theoretical predictions from the developed fluid dynamic model.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"44 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Hydraulic Friction in Confined Flows by Laser Texturing: Experiments and Theoretical Validation\",\"authors\":\"Avinash Kumar, S. Datta, D. Kalyanasundaram\",\"doi\":\"10.1115/ICNMM2018-7740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydraulic friction reduction in a microchannel due to superhydrophobic texturing of its walls was studied theoretically and experimentally. A modified Poiseuille equation formulated from an earlier-established semi-analytical approach to model texturing of slip lengths and the “gas cushion model” was used to predict the hydraulic conductance of a microchannel. An experimental setup with a microfluidic flow cell consisting of syringe pump, pressure manometer and tubing measured the pressure drop at different flow rates through a microchannel. The top and bottom walls of the microchannel was textured with micro-pits using nanosecond pulsed laser on the titanium alloy Ti6Al4V. A very high contact angle was observed on the textured surfaces suggesting entrapped gas bubbles. Liquid slippage leading to reduced hydraulic friction is attributable to the bubbles. The pressure-flow rate characteristics of the microchannels confirm friction reduction and also demonstrate a reasonable agreement with the theoretical predictions from the developed fluid dynamic model.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"44 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduction of Hydraulic Friction in Confined Flows by Laser Texturing: Experiments and Theoretical Validation
Hydraulic friction reduction in a microchannel due to superhydrophobic texturing of its walls was studied theoretically and experimentally. A modified Poiseuille equation formulated from an earlier-established semi-analytical approach to model texturing of slip lengths and the “gas cushion model” was used to predict the hydraulic conductance of a microchannel. An experimental setup with a microfluidic flow cell consisting of syringe pump, pressure manometer and tubing measured the pressure drop at different flow rates through a microchannel. The top and bottom walls of the microchannel was textured with micro-pits using nanosecond pulsed laser on the titanium alloy Ti6Al4V. A very high contact angle was observed on the textured surfaces suggesting entrapped gas bubbles. Liquid slippage leading to reduced hydraulic friction is attributable to the bubbles. The pressure-flow rate characteristics of the microchannels confirm friction reduction and also demonstrate a reasonable agreement with the theoretical predictions from the developed fluid dynamic model.