基于语言和基于模型的模糊控制的自主直升机控制

B. Kadmiry, D. Driankov
{"title":"基于语言和基于模型的模糊控制的自主直升机控制","authors":"B. Kadmiry, D. Driankov","doi":"10.1109/ISIC.2001.971534","DOIUrl":null,"url":null,"abstract":"The paper presents the design of a horizontal velocity controller for the unmanned helicopter APID MK-III developed by Scandicraft AB in Sweden. The controller is able of regulating high horizontal velocities via stabilization of the attitude angles within much larger ranges than currently available. We use a novel approach to the design consisting of two steps: 1) a Mamdani-type of a fuzzy rules are used to compute for each desired horizontal velocity the corresponding desired values for the attitude angles and the main rotor collective pitch; and 2) using a nonlinear model of the altitude and attitude dynamics, a Takagi-Sugeno controller is used to regulate the attitude angles so that the helicopter achieves its desired horizontal velocities at a desired altitude. According to our knowledge this is the first time when a combination of linguistic and model-based fuzzy control is used for the control of a complicated plant such as an autonomous helicopter. The performance of the combined linguistic/model-based controllers is evaluated in simulation and shows that the proposed design method achieves its intended purpose.","PeriodicalId":367430,"journal":{"name":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Autonomous helicopter control using linguistic and model-based fuzzy control\",\"authors\":\"B. Kadmiry, D. Driankov\",\"doi\":\"10.1109/ISIC.2001.971534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the design of a horizontal velocity controller for the unmanned helicopter APID MK-III developed by Scandicraft AB in Sweden. The controller is able of regulating high horizontal velocities via stabilization of the attitude angles within much larger ranges than currently available. We use a novel approach to the design consisting of two steps: 1) a Mamdani-type of a fuzzy rules are used to compute for each desired horizontal velocity the corresponding desired values for the attitude angles and the main rotor collective pitch; and 2) using a nonlinear model of the altitude and attitude dynamics, a Takagi-Sugeno controller is used to regulate the attitude angles so that the helicopter achieves its desired horizontal velocities at a desired altitude. According to our knowledge this is the first time when a combination of linguistic and model-based fuzzy control is used for the control of a complicated plant such as an autonomous helicopter. The performance of the combined linguistic/model-based controllers is evaluated in simulation and shows that the proposed design method achieves its intended purpose.\",\"PeriodicalId\":367430,\"journal\":{\"name\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2001.971534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2001.971534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

介绍了瑞典scanicraft AB公司研制的无人直升机APID MK-III水平速度控制器的设计。该控制器能够通过稳定姿态角在比目前可用的更大范围内调节高水平速度。我们采用了一种新的设计方法,包括两个步骤:1)使用mamdani型模糊规则计算每个期望的水平速度对应的姿态角和主转子集体螺距的期望值;2)利用高度和姿态动力学的非线性模型,利用Takagi-Sugeno控制器调节姿态角,使直升机在期望高度达到期望的水平速度。据我们所知,这是第一次将语言模糊控制和基于模型的模糊控制相结合,用于控制像自主直升机这样的复杂装置。仿真结果表明,所提出的设计方法达到了预期的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous helicopter control using linguistic and model-based fuzzy control
The paper presents the design of a horizontal velocity controller for the unmanned helicopter APID MK-III developed by Scandicraft AB in Sweden. The controller is able of regulating high horizontal velocities via stabilization of the attitude angles within much larger ranges than currently available. We use a novel approach to the design consisting of two steps: 1) a Mamdani-type of a fuzzy rules are used to compute for each desired horizontal velocity the corresponding desired values for the attitude angles and the main rotor collective pitch; and 2) using a nonlinear model of the altitude and attitude dynamics, a Takagi-Sugeno controller is used to regulate the attitude angles so that the helicopter achieves its desired horizontal velocities at a desired altitude. According to our knowledge this is the first time when a combination of linguistic and model-based fuzzy control is used for the control of a complicated plant such as an autonomous helicopter. The performance of the combined linguistic/model-based controllers is evaluated in simulation and shows that the proposed design method achieves its intended purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信