一株来自南极洲的柴油假单胞菌降解菌株的生长抑制动力学

F. Dahalan, N. Hassan
{"title":"一株来自南极洲的柴油假单胞菌降解菌株的生长抑制动力学","authors":"F. Dahalan, N. Hassan","doi":"10.54987/bstr.v7i1.458","DOIUrl":null,"url":null,"abstract":"Antarctica is one of the largest southernmost continent and most pristine wilderness areas left on earth. Over decades, human activities in this area have resulted in the accumulated pollution of hydrocarbon in the Antarctica mainly due to transportation and logistics activities. The sinking of the supply ships Nella Dan and Bahia Paraiso have resulted in diesel spillage that warrant the utilization and research on diesel-degrading microorganisms in the form of bioremediation to prepare for future disasters. A previously isolated diesel-degrading Pseudomonas sp. strain DRYJ3 has shown effectiveness as a bioremediation tool. Its growth is however strongly inhibited as the diesel concentrations was increased. In this study the inhibitory effect of diesel on the growth rate of this bacterium is modelled according to the Luong, Aiba, Haldane, Hans-Levenspiel, Yano, Teissier and Monod models. Statistical evaluations indicated that the most suitable kinetic model to fit the growth rate on diesel was Luong’s model. The Luong’s constants; maximal growth rate, half saturation constant for maximal growth, maximum substrate concentration that growth ceases, and curve parameter that defines the steepness of the growth rate decline from the maximum rate symbolized by max, Ks, Sm, and n were 0.406 hr-1 (95% CI, 0.269 to 0.881), 0.194 (%v/v) (95% CI, 0.2877 to 0.390), 4.025 (%v/v) (95% CI, 3.820 to 4.229) and 0.378 (95% CI, 0.122 to 0.877) 0.099, respectively. The Luong model predicted Sm value was close to the value of which no growth was observed experimentally suggesting the appropriateness of the model in adhering to observed values.","PeriodicalId":436607,"journal":{"name":"Bioremediation Science and Technology Research","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Inhibition Kinetics of a Pseudomonas Diesel-degrading Strain from Antarctica\",\"authors\":\"F. Dahalan, N. Hassan\",\"doi\":\"10.54987/bstr.v7i1.458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antarctica is one of the largest southernmost continent and most pristine wilderness areas left on earth. Over decades, human activities in this area have resulted in the accumulated pollution of hydrocarbon in the Antarctica mainly due to transportation and logistics activities. The sinking of the supply ships Nella Dan and Bahia Paraiso have resulted in diesel spillage that warrant the utilization and research on diesel-degrading microorganisms in the form of bioremediation to prepare for future disasters. A previously isolated diesel-degrading Pseudomonas sp. strain DRYJ3 has shown effectiveness as a bioremediation tool. Its growth is however strongly inhibited as the diesel concentrations was increased. In this study the inhibitory effect of diesel on the growth rate of this bacterium is modelled according to the Luong, Aiba, Haldane, Hans-Levenspiel, Yano, Teissier and Monod models. Statistical evaluations indicated that the most suitable kinetic model to fit the growth rate on diesel was Luong’s model. The Luong’s constants; maximal growth rate, half saturation constant for maximal growth, maximum substrate concentration that growth ceases, and curve parameter that defines the steepness of the growth rate decline from the maximum rate symbolized by max, Ks, Sm, and n were 0.406 hr-1 (95% CI, 0.269 to 0.881), 0.194 (%v/v) (95% CI, 0.2877 to 0.390), 4.025 (%v/v) (95% CI, 3.820 to 4.229) and 0.378 (95% CI, 0.122 to 0.877) 0.099, respectively. The Luong model predicted Sm value was close to the value of which no growth was observed experimentally suggesting the appropriateness of the model in adhering to observed values.\",\"PeriodicalId\":436607,\"journal\":{\"name\":\"Bioremediation Science and Technology Research\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioremediation Science and Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54987/bstr.v7i1.458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Science and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54987/bstr.v7i1.458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

南极洲是地球上最大的最南端的大陆之一,也是最原始的荒野地区。几十年来,人类在这一地区的活动造成了南极洲碳氢化合物污染的累积,主要是由于运输和物流活动。补给船Nella Dan和Bahia Paraiso的沉没导致了柴油泄漏,因此有必要以生物修复的形式利用和研究柴油降解微生物,为未来的灾难做好准备。先前分离的柴油降解假单胞菌属菌株DRYJ3已显示出作为生物修复工具的有效性。然而,随着柴油浓度的增加,其生长受到强烈抑制。在本研究中,柴油对该细菌生长速度的抑制作用根据Luong, Aiba, Haldane, Hans-Levenspiel, Yano, Teissier和Monod模型进行建模。统计评价表明,最适合柴油生长速率的动力学模型是luong模型。luong常数;最大生长速率、最大生长的半饱和常数、生长停止的最大底物浓度,以及定义生长速率从最大速率下降的陡峭度的曲线参数分别为ï′-max、Ks、Sm和n,分别为0.406 hr-1 (95% CI, 0.269 ~ 0.881)、0.194 (%v/v) (95% CI, 0.2877 ~ 0.390)、4.025 (%v/v) (95% CI, 3.820 ~ 4.229)和0.378 (95% CI, 0.122 ~ 0.877) 0.099。Luong模型预测的Sm值接近于实验中未观察到增长的值,表明该模型在坚持观测值方面是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth Inhibition Kinetics of a Pseudomonas Diesel-degrading Strain from Antarctica
Antarctica is one of the largest southernmost continent and most pristine wilderness areas left on earth. Over decades, human activities in this area have resulted in the accumulated pollution of hydrocarbon in the Antarctica mainly due to transportation and logistics activities. The sinking of the supply ships Nella Dan and Bahia Paraiso have resulted in diesel spillage that warrant the utilization and research on diesel-degrading microorganisms in the form of bioremediation to prepare for future disasters. A previously isolated diesel-degrading Pseudomonas sp. strain DRYJ3 has shown effectiveness as a bioremediation tool. Its growth is however strongly inhibited as the diesel concentrations was increased. In this study the inhibitory effect of diesel on the growth rate of this bacterium is modelled according to the Luong, Aiba, Haldane, Hans-Levenspiel, Yano, Teissier and Monod models. Statistical evaluations indicated that the most suitable kinetic model to fit the growth rate on diesel was Luong’s model. The Luong’s constants; maximal growth rate, half saturation constant for maximal growth, maximum substrate concentration that growth ceases, and curve parameter that defines the steepness of the growth rate decline from the maximum rate symbolized by max, Ks, Sm, and n were 0.406 hr-1 (95% CI, 0.269 to 0.881), 0.194 (%v/v) (95% CI, 0.2877 to 0.390), 4.025 (%v/v) (95% CI, 3.820 to 4.229) and 0.378 (95% CI, 0.122 to 0.877) 0.099, respectively. The Luong model predicted Sm value was close to the value of which no growth was observed experimentally suggesting the appropriateness of the model in adhering to observed values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信