进化算法的重复过程及其代理模型全同编码——一个理论建议

Christina Plump, Bernhard Berger, R. Drechsler
{"title":"进化算法的重复过程及其代理模型全同编码——一个理论建议","authors":"Christina Plump, Bernhard Berger, R. Drechsler","doi":"10.1145/3583133.3596389","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms are a well-known optimisation technique. They can handle very different optimisation tasks and deal with distorted search spaces as well as non-differentiable optimisation functions. One crucial aspect in the design of evolutionary algorithms is the choice of encoding. Especially its interplay with the other components of the evolutionary algorithm is a relevant factor for the success of an evolutionary algorithm. While some encoding situations are relatively trivial, others pose a challenge. We focus on encoding repetitive processes, i.e. processes that consist of several variations of the same basic process (only with varied parameters). Our work proposes a possible technique that enables the validity of the encoded search space. We also provide adaptions to the standard operators of evolutionary algorithms to ensure they produce valid solutions. Furthermore, we show how this encoding technique is compatible with using a surrogate function for the fitness calculation and may reduce the necessary training data.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repetitive Processes and Their Surrogate-Model Congruent Encoding for Evolutionary Algorithms - A Theoretic Proposal\",\"authors\":\"Christina Plump, Bernhard Berger, R. Drechsler\",\"doi\":\"10.1145/3583133.3596389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary algorithms are a well-known optimisation technique. They can handle very different optimisation tasks and deal with distorted search spaces as well as non-differentiable optimisation functions. One crucial aspect in the design of evolutionary algorithms is the choice of encoding. Especially its interplay with the other components of the evolutionary algorithm is a relevant factor for the success of an evolutionary algorithm. While some encoding situations are relatively trivial, others pose a challenge. We focus on encoding repetitive processes, i.e. processes that consist of several variations of the same basic process (only with varied parameters). Our work proposes a possible technique that enables the validity of the encoded search space. We also provide adaptions to the standard operators of evolutionary algorithms to ensure they produce valid solutions. Furthermore, we show how this encoding technique is compatible with using a surrogate function for the fitness calculation and may reduce the necessary training data.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3596389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进化算法是一种众所周知的优化技术。它们可以处理非常不同的优化任务,处理扭曲的搜索空间以及不可微的优化函数。进化算法设计的一个关键方面是编码的选择。特别是它与进化算法其他组件的相互作用是进化算法成功的一个相关因素。虽然有些编码情况相对来说比较简单,但其他情况则是一个挑战。我们专注于编码重复过程,即由相同基本过程的几个变体组成的过程(仅具有不同的参数)。我们的工作提出了一种可能的技术,使编码搜索空间的有效性。我们还提供了对进化算法的标准操作符的适应,以确保它们产生有效的解决方案。此外,我们展示了这种编码技术如何与使用代理函数进行适应度计算兼容,并可能减少必要的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repetitive Processes and Their Surrogate-Model Congruent Encoding for Evolutionary Algorithms - A Theoretic Proposal
Evolutionary algorithms are a well-known optimisation technique. They can handle very different optimisation tasks and deal with distorted search spaces as well as non-differentiable optimisation functions. One crucial aspect in the design of evolutionary algorithms is the choice of encoding. Especially its interplay with the other components of the evolutionary algorithm is a relevant factor for the success of an evolutionary algorithm. While some encoding situations are relatively trivial, others pose a challenge. We focus on encoding repetitive processes, i.e. processes that consist of several variations of the same basic process (only with varied parameters). Our work proposes a possible technique that enables the validity of the encoded search space. We also provide adaptions to the standard operators of evolutionary algorithms to ensure they produce valid solutions. Furthermore, we show how this encoding technique is compatible with using a surrogate function for the fitness calculation and may reduce the necessary training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信