稀疏精确分解更新

Jinhao Chen, T. Davis, Christopher Lourenco, Erick Moreno-Centeno
{"title":"稀疏精确分解更新","authors":"Jinhao Chen, T. Davis, Christopher Lourenco, Erick Moreno-Centeno","doi":"10.1109/IA354616.2021.00012","DOIUrl":null,"url":null,"abstract":"To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. In this paper, we discuss our on-going work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can be typically 10x to 100x faster than (re-)factorizing the matrices from scratch.","PeriodicalId":415158,"journal":{"name":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Exact Factorization Update\",\"authors\":\"Jinhao Chen, T. Davis, Christopher Lourenco, Erick Moreno-Centeno\",\"doi\":\"10.1109/IA354616.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. In this paper, we discuss our on-going work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can be typically 10x to 100x faster than (re-)factorizing the matrices from scratch.\",\"PeriodicalId\":415158,\"journal\":{\"name\":\"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IA354616.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IA354616.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了满足日益增长的对扩展或精确解算器的需求,最近开发了一个基于整数保持高斯消去(IPGE)的高效框架,该框架包括密集/稀疏LU/Cholesky分解和密集LU/Cholesky分解更新,用于列和/或行替换。在本文中,我们讨论了我们正在进行的开发稀疏LU/Cholesky列/行替换更新和稀疏rank- 1更新/downdate的工作。首先介绍了基于IPGE的精确分解框架的一些基本背景。然后给出了我们提出的算法以及一些实现和数据结构的细节。最后,我们提供了一些实验结果来展示我们的更新算法的性能。具体来说,我们表明更新这些精确的分解通常比从头开始(重新)分解矩阵快10倍到100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Exact Factorization Update
To meet the growing need for extended or exact precision solvers, an efficient framework based on Integer-Preserving Gaussian Elimination (IPGE) has been recently developed which includes dense/sparse LU/Cholesky factorizations and dense LU/Cholesky factorization updates for column and/or row replacement. In this paper, we discuss our on-going work developing the sparse LU/Cholesky column/row-replacement update and the sparse rank-l update/downdate. We first present some basic background for the exact factorization framework based on IPGE. Then we give our proposed algorithms along with some implementation and data-structure details. Finally, we provide some experimental results showcasing the performance of our update algorithms. Specifically, we show that updating these exact factorizations can be typically 10x to 100x faster than (re-)factorizing the matrices from scratch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信