基于纠错码的作家识别多班学习

U. Porwal, Chetan Ramaiah, Ashish Kumar, V. Govindaraju
{"title":"基于纠错码的作家识别多班学习","authors":"U. Porwal, Chetan Ramaiah, Ashish Kumar, V. Govindaraju","doi":"10.1109/DAS.2014.73","DOIUrl":null,"url":null,"abstract":"Writer Identification can be seen as a multi-class learning problem where number of writers are different classes. One of the fundamental approaches to solve a multi-class problemis by breaking it into binary classification tasks. In this work weare proposing a generic approach for multi-class classification using an ensemble of binary classifiers. We assign a distributedoutput representation to each class in the form of codewords andan ensemble of binary classifiers is created where each classifierpredicts one bit of the codeword. Actual label is determined using Belief Propagation algorithm on a graph constructed from the code matrix. We have performed experiments on a new publiclyavailable IBM-UB-1 dataset for the task of writer identification to show the efficacy of our method.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiclass Learning for Writer Identification Using Error-Correcting Codes\",\"authors\":\"U. Porwal, Chetan Ramaiah, Ashish Kumar, V. Govindaraju\",\"doi\":\"10.1109/DAS.2014.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writer Identification can be seen as a multi-class learning problem where number of writers are different classes. One of the fundamental approaches to solve a multi-class problemis by breaking it into binary classification tasks. In this work weare proposing a generic approach for multi-class classification using an ensemble of binary classifiers. We assign a distributedoutput representation to each class in the form of codewords andan ensemble of binary classifiers is created where each classifierpredicts one bit of the codeword. Actual label is determined using Belief Propagation algorithm on a graph constructed from the code matrix. We have performed experiments on a new publiclyavailable IBM-UB-1 dataset for the task of writer identification to show the efficacy of our method.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者识别可以看作是一个多班级学习问题,其中不同班级的作者数量不同。将多类问题分解为二元分类任务是解决多类问题的基本方法之一。在这项工作中,我们提出了一种使用二元分类器集成的多类分类的通用方法。我们以码字的形式为每个类分配一个分布式输出表示,并创建一个二进制分类器的集合,其中每个分类器预测码字的一位。在由代码矩阵构造的图上使用信念传播算法确定实际标签。我们在一个新的公开可用的IBM-UB-1数据集上进行了实验,用于作者识别任务,以显示我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiclass Learning for Writer Identification Using Error-Correcting Codes
Writer Identification can be seen as a multi-class learning problem where number of writers are different classes. One of the fundamental approaches to solve a multi-class problemis by breaking it into binary classification tasks. In this work weare proposing a generic approach for multi-class classification using an ensemble of binary classifiers. We assign a distributedoutput representation to each class in the form of codewords andan ensemble of binary classifiers is created where each classifierpredicts one bit of the codeword. Actual label is determined using Belief Propagation algorithm on a graph constructed from the code matrix. We have performed experiments on a new publiclyavailable IBM-UB-1 dataset for the task of writer identification to show the efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信