从傅里叶幅度重建连续物体分布

C. Byrne, M. Fiddy
{"title":"从傅里叶幅度重建连续物体分布","authors":"C. Byrne, M. Fiddy","doi":"10.1364/srs.1986.thb4","DOIUrl":null,"url":null,"abstract":"The phase retrieval from Fourier magnitude problem has traditionally been considered from the viewpoint of the analytic properties of Fourier transforms of finite support object distributions, [1]. It is well known that intrinsic phase ambiguities arise if the product representation of the Fourier transform has one or more non-self conjugate factors. In one dimension there can be an infinity of such factors but in two or more the exact number is difficult to ascertain. Recently there has been a trend towards considering object distributions comprising a set of discrete points,[2]. For several applications, e.g. astronomy, this is not unreasonable. This model has the great advantage that one can adopt a discrete Fourier transform representation for the Fourier data or, equivalently, a z-transform representation leading to a finite degree polynomial model. Such a model can be generally assumed to lead to a unique relationship between Fourier magnitude and phase [3] and has given confidence to the use of iterative methods which had been observed to succeed in the recovering Fourier phase from magnitude or vice-versa,[4].","PeriodicalId":262149,"journal":{"name":"Topical Meeting On Signal Recovery and Synthesis II","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of continuous object distributions from Fourier magnitude\",\"authors\":\"C. Byrne, M. Fiddy\",\"doi\":\"10.1364/srs.1986.thb4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phase retrieval from Fourier magnitude problem has traditionally been considered from the viewpoint of the analytic properties of Fourier transforms of finite support object distributions, [1]. It is well known that intrinsic phase ambiguities arise if the product representation of the Fourier transform has one or more non-self conjugate factors. In one dimension there can be an infinity of such factors but in two or more the exact number is difficult to ascertain. Recently there has been a trend towards considering object distributions comprising a set of discrete points,[2]. For several applications, e.g. astronomy, this is not unreasonable. This model has the great advantage that one can adopt a discrete Fourier transform representation for the Fourier data or, equivalently, a z-transform representation leading to a finite degree polynomial model. Such a model can be generally assumed to lead to a unique relationship between Fourier magnitude and phase [3] and has given confidence to the use of iterative methods which had been observed to succeed in the recovering Fourier phase from magnitude or vice-versa,[4].\",\"PeriodicalId\":262149,\"journal\":{\"name\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting On Signal Recovery and Synthesis II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1986.thb4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting On Signal Recovery and Synthesis II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1986.thb4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

傅里叶幅值问题的相位恢复传统上是从有限支撑对象分布的傅里叶变换的解析性质的角度来考虑的[1]。众所周知,如果傅里叶变换的乘积表示有一个或多个非自共轭因子,则会产生固有相位模糊。在一个维度中,这样的因子可能有无穷多个,但在两个或多个维度中,很难确定确切的数字。最近有一种趋势是考虑由一组离散点组成的对象分布,[2]。对于一些应用,例如天文学,这不是不合理的。该模型有一个很大的优点,即可以对傅里叶数据采用离散傅里叶变换表示,或者等效地,采用z变换表示,从而得到有限次多项式模型。通常可以假设这样的模型导致了傅里叶幅值和相位之间的独特关系[3],并且为使用迭代方法提供了信心,该方法已被观察到可以成功地从幅值恢复傅里叶相位,反之亦然,[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of continuous object distributions from Fourier magnitude
The phase retrieval from Fourier magnitude problem has traditionally been considered from the viewpoint of the analytic properties of Fourier transforms of finite support object distributions, [1]. It is well known that intrinsic phase ambiguities arise if the product representation of the Fourier transform has one or more non-self conjugate factors. In one dimension there can be an infinity of such factors but in two or more the exact number is difficult to ascertain. Recently there has been a trend towards considering object distributions comprising a set of discrete points,[2]. For several applications, e.g. astronomy, this is not unreasonable. This model has the great advantage that one can adopt a discrete Fourier transform representation for the Fourier data or, equivalently, a z-transform representation leading to a finite degree polynomial model. Such a model can be generally assumed to lead to a unique relationship between Fourier magnitude and phase [3] and has given confidence to the use of iterative methods which had been observed to succeed in the recovering Fourier phase from magnitude or vice-versa,[4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信