{"title":"联网智能手机用于灾难恢复","authors":"Zongqing Lu, G. Cao, T. L. Porta","doi":"10.1109/PERCOM.2016.7456503","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how to network smart-phones for providing communications in disaster recovery. By bridging the gaps among different kinds of wireless networks, we have designed and implemented a system called TeamPhone, which provides smartphones the capabilities of communications in disaster recovery. Specifically, TeamPhone consists of two components: a messaging system and a self-rescue system. The messaging system integrates cellular networking, ad-hoc networking and opportunistic networking seamlessly, and enables communications among rescue workers. The self-rescue system energy-efficiently groups the smartphones of trapped survivor and sends out emergency messages so as to assist rescue operations. We have implemented TeamPhone as a prototype application on the Android platform and deployed it on off-the-shelf smartphones. Experiment results show that TeamPhone can properly fulfill communication requirements and greatly facilitate rescue operations in disaster recovery.","PeriodicalId":275797,"journal":{"name":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Networking smartphones for disaster recovery\",\"authors\":\"Zongqing Lu, G. Cao, T. L. Porta\",\"doi\":\"10.1109/PERCOM.2016.7456503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate how to network smart-phones for providing communications in disaster recovery. By bridging the gaps among different kinds of wireless networks, we have designed and implemented a system called TeamPhone, which provides smartphones the capabilities of communications in disaster recovery. Specifically, TeamPhone consists of two components: a messaging system and a self-rescue system. The messaging system integrates cellular networking, ad-hoc networking and opportunistic networking seamlessly, and enables communications among rescue workers. The self-rescue system energy-efficiently groups the smartphones of trapped survivor and sends out emergency messages so as to assist rescue operations. We have implemented TeamPhone as a prototype application on the Android platform and deployed it on off-the-shelf smartphones. Experiment results show that TeamPhone can properly fulfill communication requirements and greatly facilitate rescue operations in disaster recovery.\",\"PeriodicalId\":275797,\"journal\":{\"name\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2016.7456503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2016.7456503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we investigate how to network smart-phones for providing communications in disaster recovery. By bridging the gaps among different kinds of wireless networks, we have designed and implemented a system called TeamPhone, which provides smartphones the capabilities of communications in disaster recovery. Specifically, TeamPhone consists of two components: a messaging system and a self-rescue system. The messaging system integrates cellular networking, ad-hoc networking and opportunistic networking seamlessly, and enables communications among rescue workers. The self-rescue system energy-efficiently groups the smartphones of trapped survivor and sends out emergency messages so as to assist rescue operations. We have implemented TeamPhone as a prototype application on the Android platform and deployed it on off-the-shelf smartphones. Experiment results show that TeamPhone can properly fulfill communication requirements and greatly facilitate rescue operations in disaster recovery.