基于稀疏表示的异常驾驶行为检测

Chien-Yu Chiou, P. Chung, Chun-Rong Huang, M. Chang
{"title":"基于稀疏表示的异常驾驶行为检测","authors":"Chien-Yu Chiou, P. Chung, Chun-Rong Huang, M. Chang","doi":"10.1109/ICS.2016.0085","DOIUrl":null,"url":null,"abstract":"To reduce the chance of traffic crashes, many driver monitoring systems (DMSs) have been developed. A DMS warns the driver under abnormal driving conditions. However, traditional approaches require enumerating abnormal driving conditions. In this paper, we propose a novel DMS, which models the driver's normal driving statuses based on sparse reconstruction. The proposed DMS compares the driver's statuses with his/her personal normal driving status model and identifies abnormal driving statuses that greatly change the driver's appearances. The experimental results show good performance of the proposed DMS to detect variant abnormal driver conditions.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Abnormal Driving Behavior Detection Using Sparse Representation\",\"authors\":\"Chien-Yu Chiou, P. Chung, Chun-Rong Huang, M. Chang\",\"doi\":\"10.1109/ICS.2016.0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the chance of traffic crashes, many driver monitoring systems (DMSs) have been developed. A DMS warns the driver under abnormal driving conditions. However, traditional approaches require enumerating abnormal driving conditions. In this paper, we propose a novel DMS, which models the driver's normal driving statuses based on sparse reconstruction. The proposed DMS compares the driver's statuses with his/her personal normal driving status model and identifies abnormal driving statuses that greatly change the driver's appearances. The experimental results show good performance of the proposed DMS to detect variant abnormal driver conditions.\",\"PeriodicalId\":281088,\"journal\":{\"name\":\"2016 International Computer Symposium (ICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Computer Symposium (ICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICS.2016.0085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了减少交通事故的发生,人们开发了许多驾驶员监控系统(dms)。在不正常的驾驶情况下,DMS会向驾驶员发出警告。然而,传统的方法需要列举异常驾驶条件。本文提出了一种基于稀疏重构的驾驶员正常驾驶状态模型。本文提出的DMS将驾驶员的驾驶状态与其个人的正常驾驶状态模型进行比较,识别出对驾驶员外表有较大改变的异常驾驶状态。实验结果表明,所提出的DMS能够很好地检测各种异常驾驶状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Driving Behavior Detection Using Sparse Representation
To reduce the chance of traffic crashes, many driver monitoring systems (DMSs) have been developed. A DMS warns the driver under abnormal driving conditions. However, traditional approaches require enumerating abnormal driving conditions. In this paper, we propose a novel DMS, which models the driver's normal driving statuses based on sparse reconstruction. The proposed DMS compares the driver's statuses with his/her personal normal driving status model and identifies abnormal driving statuses that greatly change the driver's appearances. The experimental results show good performance of the proposed DMS to detect variant abnormal driver conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信