R. Liu, Qicheng Li, Feng Li, Lijun Mei, Juhnyoung Lee
{"title":"IT事件管理的大数据架构","authors":"R. Liu, Qicheng Li, Feng Li, Lijun Mei, Juhnyoung Lee","doi":"10.1109/SOLI.2014.6960762","DOIUrl":null,"url":null,"abstract":"IT incident management aims to restore normal service quality and availability of IT systems from interruptions. IT incidents often have complicated causes aggregated from an IT environment composed of thousands of interdependent components. Incident diagnosis then requires collecting and analyzing a large scale of data regarding these components, often, in real time to find suspect causes. It is extremely difficult to fulfill this requirement using traditional techniques. In this paper, we propose a new analysis architecture using Big Data techniques. This architecture leverages stream computing and MapReduce techniques to analyze data from various data sources, uses NoSQL databases to store incident-related documents and their relationships, and further utilizes other analytical techniques to examine the documents for root causes and failure prediction. We demonstrate this approach using a real-world example and present evaluation results from a recent pilot study.","PeriodicalId":191638,"journal":{"name":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Big Data architecture for IT incident management\",\"authors\":\"R. Liu, Qicheng Li, Feng Li, Lijun Mei, Juhnyoung Lee\",\"doi\":\"10.1109/SOLI.2014.6960762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IT incident management aims to restore normal service quality and availability of IT systems from interruptions. IT incidents often have complicated causes aggregated from an IT environment composed of thousands of interdependent components. Incident diagnosis then requires collecting and analyzing a large scale of data regarding these components, often, in real time to find suspect causes. It is extremely difficult to fulfill this requirement using traditional techniques. In this paper, we propose a new analysis architecture using Big Data techniques. This architecture leverages stream computing and MapReduce techniques to analyze data from various data sources, uses NoSQL databases to store incident-related documents and their relationships, and further utilizes other analytical techniques to examine the documents for root causes and failure prediction. We demonstrate this approach using a real-world example and present evaluation results from a recent pilot study.\",\"PeriodicalId\":191638,\"journal\":{\"name\":\"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOLI.2014.6960762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2014.6960762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IT incident management aims to restore normal service quality and availability of IT systems from interruptions. IT incidents often have complicated causes aggregated from an IT environment composed of thousands of interdependent components. Incident diagnosis then requires collecting and analyzing a large scale of data regarding these components, often, in real time to find suspect causes. It is extremely difficult to fulfill this requirement using traditional techniques. In this paper, we propose a new analysis architecture using Big Data techniques. This architecture leverages stream computing and MapReduce techniques to analyze data from various data sources, uses NoSQL databases to store incident-related documents and their relationships, and further utilizes other analytical techniques to examine the documents for root causes and failure prediction. We demonstrate this approach using a real-world example and present evaluation results from a recent pilot study.