一类新的模糊神经网络及其在系统建模中的应用

H. Ma, A. El-Keib, X. Ma
{"title":"一类新的模糊神经网络及其在系统建模中的应用","authors":"H. Ma, A. El-Keib, X. Ma","doi":"10.1109/SECON.1994.324333","DOIUrl":null,"url":null,"abstract":"This paper presents a new class of fuzzy neural networks and its application to system modeling. The optimal set of fuzzy associative memory rules and weights can be identified for a given set of sample data. Test results of modeling a nonlinear system show that the proposed fuzzy neural network can accurately model a complicated nonlinear system and the model is quite robust in the sense that its modeling accuracy is much insensitive to sample data.<<ETX>>","PeriodicalId":119615,"journal":{"name":"Proceedings of SOUTHEASTCON '94","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new class of fuzzy neural networks with application in system modeling\",\"authors\":\"H. Ma, A. El-Keib, X. Ma\",\"doi\":\"10.1109/SECON.1994.324333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new class of fuzzy neural networks and its application to system modeling. The optimal set of fuzzy associative memory rules and weights can be identified for a given set of sample data. Test results of modeling a nonlinear system show that the proposed fuzzy neural network can accurately model a complicated nonlinear system and the model is quite robust in the sense that its modeling accuracy is much insensitive to sample data.<<ETX>>\",\"PeriodicalId\":119615,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '94\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1994.324333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1994.324333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一类新的模糊神经网络及其在系统建模中的应用。对于给定的样本数据集,可以识别出最优的模糊关联记忆规则集和权重集。非线性系统建模的实验结果表明,所提出的模糊神经网络可以准确地对复杂的非线性系统进行建模,并且模型具有很强的鲁棒性,其建模精度对样本数据不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of fuzzy neural networks with application in system modeling
This paper presents a new class of fuzzy neural networks and its application to system modeling. The optimal set of fuzzy associative memory rules and weights can be identified for a given set of sample data. Test results of modeling a nonlinear system show that the proposed fuzzy neural network can accurately model a complicated nonlinear system and the model is quite robust in the sense that its modeling accuracy is much insensitive to sample data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信