{"title":"神经模糊演员评价强化学习确定最佳时间计划","authors":"L. Chong, M. Abbas","doi":"10.1109/ITSC.2010.5625260","DOIUrl":null,"url":null,"abstract":"The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neuro-Fuzzy Actor Critic Reinforcement Learning for determination of optimal timing plans\",\"authors\":\"L. Chong, M. Abbas\",\"doi\":\"10.1109/ITSC.2010.5625260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5625260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuro-Fuzzy Actor Critic Reinforcement Learning for determination of optimal timing plans
The purpose of timing plan optimization is to decrease delay and increase the overall performance of transportation network. This paper presents an agent-based reinforcement learning framework to train optimization agents to take appropriate actions according to perceived traffic states. Neuro-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is applied in isolated intersection control. The control agent gets knowledge of traffic states after the learning process and determines the optimal phase durations required to minimize vehicle delay at a given intersection.