基于多阶段聚类的模糊模式识别规则库自动生成方法

Franjo Ivancic, A. Malaviya, L. Peters
{"title":"基于多阶段聚类的模糊模式识别规则库自动生成方法","authors":"Franjo Ivancic, A. Malaviya, L. Peters","doi":"10.1109/KES.1998.725955","DOIUrl":null,"url":null,"abstract":"Presents an approach for the automatic generation of fuzzy rule bases for pattern recognition from a given sample data. The general idea of the approach is to use and enhance the fuzzy c-means clustering algorithm. The rule base is generated through a modified iterative feature clustering method. A following cross-checking is used to separate the generated rules. Although the rule base generation method was initially developed for handwriting features the scope of its applicability is much larger. The proposed clustering algorithm was tested with input feature space up to 125 dimensions.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"18 06","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An automatic rule base generation method for fuzzy pattern recognition with multiphased clustering\",\"authors\":\"Franjo Ivancic, A. Malaviya, L. Peters\",\"doi\":\"10.1109/KES.1998.725955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents an approach for the automatic generation of fuzzy rule bases for pattern recognition from a given sample data. The general idea of the approach is to use and enhance the fuzzy c-means clustering algorithm. The rule base is generated through a modified iterative feature clustering method. A following cross-checking is used to separate the generated rules. Although the rule base generation method was initially developed for handwriting features the scope of its applicability is much larger. The proposed clustering algorithm was tested with input feature space up to 125 dimensions.\",\"PeriodicalId\":394492,\"journal\":{\"name\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"volume\":\"18 06\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KES.1998.725955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种从给定样本数据中自动生成模式识别模糊规则库的方法。该方法的总体思想是使用和增强模糊c均值聚类算法。通过改进的迭代特征聚类方法生成规则库。下面的交叉检查用于分离生成的规则。虽然规则库生成方法最初是针对手写特征开发的,但其适用范围要大得多。在输入特征空间达到125维的情况下,对所提出的聚类算法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic rule base generation method for fuzzy pattern recognition with multiphased clustering
Presents an approach for the automatic generation of fuzzy rule bases for pattern recognition from a given sample data. The general idea of the approach is to use and enhance the fuzzy c-means clustering algorithm. The rule base is generated through a modified iterative feature clustering method. A following cross-checking is used to separate the generated rules. Although the rule base generation method was initially developed for handwriting features the scope of its applicability is much larger. The proposed clustering algorithm was tested with input feature space up to 125 dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信