二自由度双转子MIMO系统的滑模状态观测器

B. Pratap, S. Purwar
{"title":"二自由度双转子MIMO系统的滑模状态观测器","authors":"B. Pratap, S. Purwar","doi":"10.1109/ICPCES.2010.5698618","DOIUrl":null,"url":null,"abstract":"This paper presents a sliding mode state observer for the 2-DOF twin rotor MIMO (multi-input-multi-output) system which belongs to a class of inherently nonlinear systems. Design parameters are selected such that on the defined switching surface, asymptotically stable sliding mode is always generated. Robust sliding and global asymptotic stability conditions are derived by using Lyapunov method. The unknown nonlinearities are estimated and the state estimation errors tend to zero asymptotically.","PeriodicalId":439893,"journal":{"name":"2010 International Conference on Power, Control and Embedded Systems","volume":"27 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Sliding mode state observer for 2-DOF twin rotor MIMO system\",\"authors\":\"B. Pratap, S. Purwar\",\"doi\":\"10.1109/ICPCES.2010.5698618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a sliding mode state observer for the 2-DOF twin rotor MIMO (multi-input-multi-output) system which belongs to a class of inherently nonlinear systems. Design parameters are selected such that on the defined switching surface, asymptotically stable sliding mode is always generated. Robust sliding and global asymptotic stability conditions are derived by using Lyapunov method. The unknown nonlinearities are estimated and the state estimation errors tend to zero asymptotically.\",\"PeriodicalId\":439893,\"journal\":{\"name\":\"2010 International Conference on Power, Control and Embedded Systems\",\"volume\":\"27 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Power, Control and Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPCES.2010.5698618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Power, Control and Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCES.2010.5698618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

针对一类固有非线性系统,提出了一种2自由度双转子MIMO系统的滑模状态观测器。设计参数的选择使得在定义的开关曲面上总能产生渐近稳定的滑模。利用Lyapunov方法导出了系统的鲁棒滑动和全局渐近稳定条件。对未知非线性进行估计,使状态估计误差渐近趋于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding mode state observer for 2-DOF twin rotor MIMO system
This paper presents a sliding mode state observer for the 2-DOF twin rotor MIMO (multi-input-multi-output) system which belongs to a class of inherently nonlinear systems. Design parameters are selected such that on the defined switching surface, asymptotically stable sliding mode is always generated. Robust sliding and global asymptotic stability conditions are derived by using Lyapunov method. The unknown nonlinearities are estimated and the state estimation errors tend to zero asymptotically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信