描述实验设计与最坏情况性能优化的统一——适应正则化范式的高分辨率雷达图像重建

Y. Shkvarko
{"title":"描述实验设计与最坏情况性能优化的统一——适应正则化范式的高分辨率雷达图像重建","authors":"Y. Shkvarko","doi":"10.1109/ICEAA.2007.4387307","DOIUrl":null,"url":null,"abstract":"We address a new approach to solving radar imaging problems stated and treated as uncertain ill-conditioned inverse problems of nonparametric spatial power spectrum estimation via processing the finite number of independent observations of the degraded array data signals (one realization of the trajectory signal in the case of SAR). The idea is to adapt a statistically optimal minimum risk nonparametric power spectrum estimation approach to the radar imaging scenarios with model-level and system-level uncertainties. The proposed incorporation of the worst-case performance optimization-adapted robust regularization aggregated with the descriptive experiment design paradigm into the minimum risk nonparametric estimation strategy leads to a new unified doubly regularized minimum risk approach for robust adaptive high-resolution reconstructive imaging in the uncertain remote sensing scenarios.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unification of Descriptive Experiment Design and Worst-Case Performance Optimization-Adapted Regularization Paradigms for High-Resolution Reconstruction of Radar Imagery\",\"authors\":\"Y. Shkvarko\",\"doi\":\"10.1109/ICEAA.2007.4387307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a new approach to solving radar imaging problems stated and treated as uncertain ill-conditioned inverse problems of nonparametric spatial power spectrum estimation via processing the finite number of independent observations of the degraded array data signals (one realization of the trajectory signal in the case of SAR). The idea is to adapt a statistically optimal minimum risk nonparametric power spectrum estimation approach to the radar imaging scenarios with model-level and system-level uncertainties. The proposed incorporation of the worst-case performance optimization-adapted robust regularization aggregated with the descriptive experiment design paradigm into the minimum risk nonparametric estimation strategy leads to a new unified doubly regularized minimum risk approach for robust adaptive high-resolution reconstructive imaging in the uncertain remote sensing scenarios.\",\"PeriodicalId\":273595,\"journal\":{\"name\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2007.4387307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法来解决雷达成像问题,通过处理退化阵列数据信号的有限数量的独立观测(在SAR的情况下实现了轨迹信号),并将其视为非参数空间功率谱估计的不确定病态逆问题。其思想是将统计上最优的最小风险非参数功率谱估计方法应用于具有模型级和系统级不确定性的雷达成像场景。将最坏情况性能优化鲁棒正则化与描述性实验设计范式结合到最小风险非参数估计策略中,提出了一种新的统一的双正则化最小风险方法,用于不确定遥感场景下的鲁棒自适应高分辨率重建成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unification of Descriptive Experiment Design and Worst-Case Performance Optimization-Adapted Regularization Paradigms for High-Resolution Reconstruction of Radar Imagery
We address a new approach to solving radar imaging problems stated and treated as uncertain ill-conditioned inverse problems of nonparametric spatial power spectrum estimation via processing the finite number of independent observations of the degraded array data signals (one realization of the trajectory signal in the case of SAR). The idea is to adapt a statistically optimal minimum risk nonparametric power spectrum estimation approach to the radar imaging scenarios with model-level and system-level uncertainties. The proposed incorporation of the worst-case performance optimization-adapted robust regularization aggregated with the descriptive experiment design paradigm into the minimum risk nonparametric estimation strategy leads to a new unified doubly regularized minimum risk approach for robust adaptive high-resolution reconstructive imaging in the uncertain remote sensing scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信