基于鼻内镜图像对比学习的腺样体肥大分级网络

Siting Zheng, Xuechen Li, Mingmin Bi, Yuxuan Wang, Haiyan Liu, Xia Feng, Yunping Fan, Linlin Shen
{"title":"基于鼻内镜图像对比学习的腺样体肥大分级网络","authors":"Siting Zheng, Xuechen Li, Mingmin Bi, Yuxuan Wang, Haiyan Liu, Xia Feng, Yunping Fan, Linlin Shen","doi":"10.1109/CBMS55023.2022.00074","DOIUrl":null,"url":null,"abstract":"Adenoid hypertrophy is a common disease in children with otolaryngology diseases. Otolaryngologists usually use nasoendoscopy for adenoid hypertrophy screening, which is however tedious and time-consuming for the grading. So far, artificial intelligence technology has not been applied to the grading of nasoendoscopic adenoid. In this work, we firstly propose a novel multi-scale grading network, MIB-ANet, for adenoid hypertrophy classification. And we further propose a contrastive learning-based network to alleviate the overfitting problem of the model caused by lacking of nasoendoscopic adenoid images with high-quality annotations. The experimental results show that MIB-ANet shows the best grading performance compared to four classic CNNs, i.e., AlexNet, VGG16, ResNet50 and GoogleNet. Take $F_{1}$ score as an example, MIB-ANet achieves 1.38% higher $F_{1}$ score than the best baseline CNN - AlexNet. Due to the capability of the contrastive learning-based pre-training strategy in exploring unannotated data, the pre-training using SimCLR pretext task can consistently improve the performance of MIB-ANet when different ratios of the labeled training data are employed. The MIB-ANet pre-trained by SimCLR pretext task achieves 4.41%, 2.64%, 3.10%, and 1.71% higher $F_{1}$ score when 25%, 50%, 75% and 100% of the training data are labeled, respectively.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contrastive learning-based Adenoid Hypertrophy Grading Network Using Nasoendoscopic Image\",\"authors\":\"Siting Zheng, Xuechen Li, Mingmin Bi, Yuxuan Wang, Haiyan Liu, Xia Feng, Yunping Fan, Linlin Shen\",\"doi\":\"10.1109/CBMS55023.2022.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adenoid hypertrophy is a common disease in children with otolaryngology diseases. Otolaryngologists usually use nasoendoscopy for adenoid hypertrophy screening, which is however tedious and time-consuming for the grading. So far, artificial intelligence technology has not been applied to the grading of nasoendoscopic adenoid. In this work, we firstly propose a novel multi-scale grading network, MIB-ANet, for adenoid hypertrophy classification. And we further propose a contrastive learning-based network to alleviate the overfitting problem of the model caused by lacking of nasoendoscopic adenoid images with high-quality annotations. The experimental results show that MIB-ANet shows the best grading performance compared to four classic CNNs, i.e., AlexNet, VGG16, ResNet50 and GoogleNet. Take $F_{1}$ score as an example, MIB-ANet achieves 1.38% higher $F_{1}$ score than the best baseline CNN - AlexNet. Due to the capability of the contrastive learning-based pre-training strategy in exploring unannotated data, the pre-training using SimCLR pretext task can consistently improve the performance of MIB-ANet when different ratios of the labeled training data are employed. The MIB-ANet pre-trained by SimCLR pretext task achieves 4.41%, 2.64%, 3.10%, and 1.71% higher $F_{1}$ score when 25%, 50%, 75% and 100% of the training data are labeled, respectively.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

腺样体肥大是儿童耳鼻喉科疾病的常见病。耳鼻喉科医师通常使用鼻内窥镜进行腺样体肥大筛查,但其分级繁琐且耗时。迄今为止,人工智能技术尚未应用于鼻内镜腺样体的分级。在这项工作中,我们首先提出了一个新的多尺度分级网络,MIB-ANet,用于腺样体肥大分类。我们进一步提出了一种基于对比学习的网络,以缓解由于缺乏高质量注释的鼻内镜腺样体图像而导致的模型过拟合问题。实验结果表明,与AlexNet、VGG16、ResNet50和GoogleNet四种经典cnn相比,MIB-ANet表现出最好的分级性能。以$F_{1}$分数为例,MIB-ANet的$F_{1}$分数比最佳基线CNN - AlexNet高1.38%。由于基于对比学习的预训练策略具有探索未标注数据的能力,使用SimCLR借口任务进行预训练可以在使用不同比例的标记训练数据时一致地提高MIB-ANet的性能。当25%、50%、75%和100%的训练数据被标记时,SimCLR借口任务预训练的MIB-ANet的得分分别提高了4.41%、2.64%、3.10%和1.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive learning-based Adenoid Hypertrophy Grading Network Using Nasoendoscopic Image
Adenoid hypertrophy is a common disease in children with otolaryngology diseases. Otolaryngologists usually use nasoendoscopy for adenoid hypertrophy screening, which is however tedious and time-consuming for the grading. So far, artificial intelligence technology has not been applied to the grading of nasoendoscopic adenoid. In this work, we firstly propose a novel multi-scale grading network, MIB-ANet, for adenoid hypertrophy classification. And we further propose a contrastive learning-based network to alleviate the overfitting problem of the model caused by lacking of nasoendoscopic adenoid images with high-quality annotations. The experimental results show that MIB-ANet shows the best grading performance compared to four classic CNNs, i.e., AlexNet, VGG16, ResNet50 and GoogleNet. Take $F_{1}$ score as an example, MIB-ANet achieves 1.38% higher $F_{1}$ score than the best baseline CNN - AlexNet. Due to the capability of the contrastive learning-based pre-training strategy in exploring unannotated data, the pre-training using SimCLR pretext task can consistently improve the performance of MIB-ANet when different ratios of the labeled training data are employed. The MIB-ANet pre-trained by SimCLR pretext task achieves 4.41%, 2.64%, 3.10%, and 1.71% higher $F_{1}$ score when 25%, 50%, 75% and 100% of the training data are labeled, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信