钻石

P. Scholze, Jared Weinstein
{"title":"钻石","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvwh8dr6.49","DOIUrl":null,"url":null,"abstract":"This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diamonds\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvwh8dr6.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvwh8dr6.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvwh8dr6.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章探讨钻石的概念。这个想法是,应该有一个函子“忘记了Zp的结构态射”。在本章提供的例子中,期望商存在于具有pro- samtale盖的完美曲面空间的位置上的一组束中。然后,本章定义了完美曲面空间之间的pro-雅致态射。如果一个完全仿形空间的态射在局部(在源和目标上)是仿似的仿似的,那么它就是仿似的。菱形的直观定义涉及特征为0的完美曲面空间中的倾斜函子。因此,将菱形定义为特征为p的完美曲面空间范畴上的某些亲栅格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diamonds
This chapter investigates the notion of a diamond. The idea is that there should be a functor which “forgets the structure morphism to Zp.” The desired quotient in the example provided in the chapter exists in a category of sheaves on the site of perfectoid spaces with pro-étale covers. The chapter then defines pro-étale morphisms between perfectoid spaces. A morphism of perfectoid spaces is pro-étale if it is locally (on the source and target) affinoid pro-étale. The intuitive definition of diamonds involved the tilting functor in case of perfectoid spaces of characteristic 0. For this reason, diamonds are defined as certain pro-étale sheaves on the category of perfectoid spaces of characteristic p.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信