剩余使用寿命预测数据处理框架的集成成组方法

Xin Ge, Shunjie Zhang, Q. Cheng, Xuejun Zhao, Yong Qin
{"title":"剩余使用寿命预测数据处理框架的集成成组方法","authors":"Xin Ge, Shunjie Zhang, Q. Cheng, Xuejun Zhao, Yong Qin","doi":"10.1109/SDPC.2019.00160","DOIUrl":null,"url":null,"abstract":"Considering the shortcomings of a single Group Method of Data Handling (GMDH) network that is easy to fall into local optimum, this paper proposes an integrated GMDH framework for Remaining Useful Life (RUL) prediction. The framework generates three GMDH networks through different division of training data, and integrates the results of the three GMDH networks with a three-layer back propagation (BP) neural network. The NASA C-MAPSS dataset is used to evaluate the effectiveness of the proposed methodˈ by comparison with the prediction results of a single GMDH network and Long Short-Term Memory (LSTM) network. The results show that the proposed method can effectively improve the generalization ability of the GMDH network and is superior to the LSTM in terms of root mean squared error (RMSE).","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Group Method of Data Handing Framework for Remaining Useful Life Prediction\",\"authors\":\"Xin Ge, Shunjie Zhang, Q. Cheng, Xuejun Zhao, Yong Qin\",\"doi\":\"10.1109/SDPC.2019.00160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the shortcomings of a single Group Method of Data Handling (GMDH) network that is easy to fall into local optimum, this paper proposes an integrated GMDH framework for Remaining Useful Life (RUL) prediction. The framework generates three GMDH networks through different division of training data, and integrates the results of the three GMDH networks with a three-layer back propagation (BP) neural network. The NASA C-MAPSS dataset is used to evaluate the effectiveness of the proposed methodˈ by comparison with the prediction results of a single GMDH network and Long Short-Term Memory (LSTM) network. The results show that the proposed method can effectively improve the generalization ability of the GMDH network and is superior to the LSTM in terms of root mean squared error (RMSE).\",\"PeriodicalId\":403595,\"journal\":{\"name\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDPC.2019.00160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对单组数据处理方法(GMDH)网络容易陷入局部最优的缺点,提出了一种用于剩余使用寿命(RUL)预测的集成GMDH框架。该框架通过对训练数据的不同划分生成三个GMDH网络,并将三个GMDH网络的结果与一个三层BP神经网络进行整合。利用NASA C-MAPSS数据集,通过与单一GMDH网络和长短期记忆(LSTM)网络的预测结果进行比较,评估了所提方法的有效性。结果表明,该方法能有效提高GMDH网络的泛化能力,且在均方根误差(RMSE)方面优于LSTM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Group Method of Data Handing Framework for Remaining Useful Life Prediction
Considering the shortcomings of a single Group Method of Data Handling (GMDH) network that is easy to fall into local optimum, this paper proposes an integrated GMDH framework for Remaining Useful Life (RUL) prediction. The framework generates three GMDH networks through different division of training data, and integrates the results of the three GMDH networks with a three-layer back propagation (BP) neural network. The NASA C-MAPSS dataset is used to evaluate the effectiveness of the proposed methodˈ by comparison with the prediction results of a single GMDH network and Long Short-Term Memory (LSTM) network. The results show that the proposed method can effectively improve the generalization ability of the GMDH network and is superior to the LSTM in terms of root mean squared error (RMSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信