基于DCT系数统计的图像相关噪声分析自动化

A. Roenko, V. Lukin, S. Abramov, I. Djurović
{"title":"基于DCT系数统计的图像相关噪声分析自动化","authors":"A. Roenko, V. Lukin, S. Abramov, I. Djurović","doi":"10.1109/MECO.2014.6862670","DOIUrl":null,"url":null,"abstract":"Knowledge of noise properties is important for many applications. It is often necessary to estimate characteristics of noise, in particular, spatially correlated noise automatically. For this purpose, it is desirable to have methods that allow obtaining preliminary estimates of spatial correlation degree. Here we show how this can be done by processing discrete cosine transform (DCT) coefficients calculated in 8×8 pixel image blocks. Moreover, we test the proposed method for synthetic aperture radar (SAR) images with different number of looks. The performed tests demonstrate that for TerraSAR-X data the noise correlation degree increases for larger number of looks. Besides, it is shown that the approach earlier tested for additive noise is applicable to pure multiplicative noise (speckle) and, in general to other kinds of signal-dependent noise.","PeriodicalId":416168,"journal":{"name":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automation of analysis for correlated noise in images based on DCT coefficient statistics\",\"authors\":\"A. Roenko, V. Lukin, S. Abramov, I. Djurović\",\"doi\":\"10.1109/MECO.2014.6862670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of noise properties is important for many applications. It is often necessary to estimate characteristics of noise, in particular, spatially correlated noise automatically. For this purpose, it is desirable to have methods that allow obtaining preliminary estimates of spatial correlation degree. Here we show how this can be done by processing discrete cosine transform (DCT) coefficients calculated in 8×8 pixel image blocks. Moreover, we test the proposed method for synthetic aperture radar (SAR) images with different number of looks. The performed tests demonstrate that for TerraSAR-X data the noise correlation degree increases for larger number of looks. Besides, it is shown that the approach earlier tested for additive noise is applicable to pure multiplicative noise (speckle) and, in general to other kinds of signal-dependent noise.\",\"PeriodicalId\":416168,\"journal\":{\"name\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 3rd Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2014.6862670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 3rd Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2014.6862670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

噪声特性的知识在许多应用中是很重要的。通常需要对噪声,特别是空间相关噪声的特征进行自动估计。为此目的,希望有一些方法可以获得空间关联度的初步估计。在这里,我们展示了如何通过处理在8×8像素图像块中计算的离散余弦变换(DCT)系数来实现这一点。此外,我们还对不同外观数的合成孔径雷达(SAR)图像进行了测试。测试结果表明,对于TerraSAR-X数据,随着观测次数的增加,噪声相关程度增加。此外,还表明前面测试的加性噪声方法适用于纯乘性噪声(散斑),一般适用于其他类型的信号相关噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automation of analysis for correlated noise in images based on DCT coefficient statistics
Knowledge of noise properties is important for many applications. It is often necessary to estimate characteristics of noise, in particular, spatially correlated noise automatically. For this purpose, it is desirable to have methods that allow obtaining preliminary estimates of spatial correlation degree. Here we show how this can be done by processing discrete cosine transform (DCT) coefficients calculated in 8×8 pixel image blocks. Moreover, we test the proposed method for synthetic aperture radar (SAR) images with different number of looks. The performed tests demonstrate that for TerraSAR-X data the noise correlation degree increases for larger number of looks. Besides, it is shown that the approach earlier tested for additive noise is applicable to pure multiplicative noise (speckle) and, in general to other kinds of signal-dependent noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信