在三角形网格上恒时O(1)对测地线距离查询

Shiqing Xin, Xiang Ying, Ying He
{"title":"在三角形网格上恒时O(1)对测地线距离查询","authors":"Shiqing Xin, Xiang Ying, Ying He","doi":"10.1145/2077378.2077407","DOIUrl":null,"url":null,"abstract":"Geodesic plays an important role in geometric computation and analysis. Rather than the widely studied single source all destination discrete geodesic problem, very little work has been reported on the all pairs geodesic distance query So far, the best known result is due to Cook IV and Wenk [2009], who pre-computed the pairwise geodesic between any two mesh vertices in O(n52α(n) logn) time complexity and O(n4) space complexity, where n is the number of mesh vertices and α(n) the inverse Ackermann function. Then the geodesic distance between any pair of points on the mesh edges can be computed in O(m + logn) time, where m is the number of edges crossed by the geodesic path. Although Cook IV and Wenk's algorithm is able to compute the exact geodesic the high computational cost limits its applications to real-world models which usually contain thousands of vertices.","PeriodicalId":137004,"journal":{"name":"SIGGRAPH Asia 2011 Sketches","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Constant-time O(1) all pairs geodesic distance query on triangle meshes\",\"authors\":\"Shiqing Xin, Xiang Ying, Ying He\",\"doi\":\"10.1145/2077378.2077407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geodesic plays an important role in geometric computation and analysis. Rather than the widely studied single source all destination discrete geodesic problem, very little work has been reported on the all pairs geodesic distance query So far, the best known result is due to Cook IV and Wenk [2009], who pre-computed the pairwise geodesic between any two mesh vertices in O(n52α(n) logn) time complexity and O(n4) space complexity, where n is the number of mesh vertices and α(n) the inverse Ackermann function. Then the geodesic distance between any pair of points on the mesh edges can be computed in O(m + logn) time, where m is the number of edges crossed by the geodesic path. Although Cook IV and Wenk's algorithm is able to compute the exact geodesic the high computational cost limits its applications to real-world models which usually contain thousands of vertices.\",\"PeriodicalId\":137004,\"journal\":{\"name\":\"SIGGRAPH Asia 2011 Sketches\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2011 Sketches\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2077378.2077407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2011 Sketches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2077378.2077407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

测地线在几何计算和分析中起着重要的作用。与被广泛研究的单源全目标离散测地线问题相比,迄今为止关于全对测地线距离查询的研究很少,最著名的结果是Cook IV和Wenk[2009],他们以O(n52α(n) logn)时间复杂度和O(n4)空间复杂度预先计算了任意两个网格顶点之间的配对测地线,其中n为网格顶点数,α(n)为逆Ackermann函数。然后,可以在O(m + logn)时间内计算网格边缘上任意对点之间的测地线距离,其中m为测地线路径穿过的边数。尽管Cook IV和Wenk的算法能够计算出精确的测地线,但高昂的计算成本限制了它在现实世界中通常包含数千个顶点的模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constant-time O(1) all pairs geodesic distance query on triangle meshes
Geodesic plays an important role in geometric computation and analysis. Rather than the widely studied single source all destination discrete geodesic problem, very little work has been reported on the all pairs geodesic distance query So far, the best known result is due to Cook IV and Wenk [2009], who pre-computed the pairwise geodesic between any two mesh vertices in O(n52α(n) logn) time complexity and O(n4) space complexity, where n is the number of mesh vertices and α(n) the inverse Ackermann function. Then the geodesic distance between any pair of points on the mesh edges can be computed in O(m + logn) time, where m is the number of edges crossed by the geodesic path. Although Cook IV and Wenk's algorithm is able to compute the exact geodesic the high computational cost limits its applications to real-world models which usually contain thousands of vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信