面对混乱的数据,衡量成本规避

J. Romeu, J. Ciccimaro, J. Trinkle
{"title":"面对混乱的数据,衡量成本规避","authors":"J. Romeu, J. Ciccimaro, J. Trinkle","doi":"10.1109/RAMS.2004.1285440","DOIUrl":null,"url":null,"abstract":"This paper presents alternative methods to forecast or predict failure trends when the data violates the assumptions associated with least squares linear regression. Simulations based on actual case studies validated that least squares linear regression may provide a biased model in the presence of messy data. Non-parametric regression methods provide robust forecasting models less sensitive to non-constant variability, outliers, and small data sets.","PeriodicalId":270494,"journal":{"name":"Annual Symposium Reliability and Maintainability, 2004 - RAMS","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Measuring cost avoidance in the face of messy data\",\"authors\":\"J. Romeu, J. Ciccimaro, J. Trinkle\",\"doi\":\"10.1109/RAMS.2004.1285440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents alternative methods to forecast or predict failure trends when the data violates the assumptions associated with least squares linear regression. Simulations based on actual case studies validated that least squares linear regression may provide a biased model in the presence of messy data. Non-parametric regression methods provide robust forecasting models less sensitive to non-constant variability, outliers, and small data sets.\",\"PeriodicalId\":270494,\"journal\":{\"name\":\"Annual Symposium Reliability and Maintainability, 2004 - RAMS\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium Reliability and Maintainability, 2004 - RAMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2004.1285440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium Reliability and Maintainability, 2004 - RAMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2004.1285440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了当数据违反与最小二乘线性回归相关的假设时预测或预测失效趋势的替代方法。基于实际案例研究的模拟验证了最小二乘线性回归在杂乱数据存在时可能提供有偏差的模型。非参数回归方法提供了对非恒定变异性、异常值和小数据集不太敏感的稳健预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring cost avoidance in the face of messy data
This paper presents alternative methods to forecast or predict failure trends when the data violates the assumptions associated with least squares linear regression. Simulations based on actual case studies validated that least squares linear regression may provide a biased model in the presence of messy data. Non-parametric regression methods provide robust forecasting models less sensitive to non-constant variability, outliers, and small data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信