离散化Lyapunov-Krasovskii泛函方法估计稳定延迟区间

Yong-ming Li, K. Gu, Shengyuan Xu
{"title":"离散化Lyapunov-Krasovskii泛函方法估计稳定延迟区间","authors":"Yong-ming Li, K. Gu, Shengyuan Xu","doi":"10.1109/ICCA.2013.6565019","DOIUrl":null,"url":null,"abstract":"The discretized Lyapunov-Krasovskii functional (DLF) method is asymptotically accurate in stability analysis for time-delay systems. In general, a system may have multiple stable delay intervals, and DLF is especially effective to study such systems. In this article, a DLF-based method is proposed to accurately estimate the maximum stable delay interval without using bisection, when one point in this interval is given. The formulation uses generalized eigenvalue problem (GEVP) of linear matrix inequalities (LMIs), and iterations may be used to reach the analytical limits either in finite number of steps or asymptotically. The coupled differential-difference equations are used to illustrate the method. However, the idea can be easily adapted to traditional differential-difference equation setting.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimating stable delay interval using discretized Lyapunov-Krasovskii functional method\",\"authors\":\"Yong-ming Li, K. Gu, Shengyuan Xu\",\"doi\":\"10.1109/ICCA.2013.6565019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discretized Lyapunov-Krasovskii functional (DLF) method is asymptotically accurate in stability analysis for time-delay systems. In general, a system may have multiple stable delay intervals, and DLF is especially effective to study such systems. In this article, a DLF-based method is proposed to accurately estimate the maximum stable delay interval without using bisection, when one point in this interval is given. The formulation uses generalized eigenvalue problem (GEVP) of linear matrix inequalities (LMIs), and iterations may be used to reach the analytical limits either in finite number of steps or asymptotically. The coupled differential-difference equations are used to illustrate the method. However, the idea can be easily adapted to traditional differential-difference equation setting.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6565019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

离散化Lyapunov-Krasovskii泛函(DLF)方法在时滞系统稳定性分析中具有渐近精度。一般来说,一个系统可能有多个稳定的延迟区间,DLF对于研究这类系统特别有效。本文提出了一种基于dlf的方法,当该区间中的一个点给定时,可以不使用对分法准确估计最大稳定延迟区间。该公式采用线性矩阵不等式(lmi)的广义特征值问题(GEVP),迭代可以达到有限步数或渐近的解析极限。用耦合微分-差分方程来说明该方法。然而,这种思想可以很容易地适用于传统的微分-差分方程的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating stable delay interval using discretized Lyapunov-Krasovskii functional method
The discretized Lyapunov-Krasovskii functional (DLF) method is asymptotically accurate in stability analysis for time-delay systems. In general, a system may have multiple stable delay intervals, and DLF is especially effective to study such systems. In this article, a DLF-based method is proposed to accurately estimate the maximum stable delay interval without using bisection, when one point in this interval is given. The formulation uses generalized eigenvalue problem (GEVP) of linear matrix inequalities (LMIs), and iterations may be used to reach the analytical limits either in finite number of steps or asymptotically. The coupled differential-difference equations are used to illustrate the method. However, the idea can be easily adapted to traditional differential-difference equation setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信