基于多方向图像投影的连体神经网络车辆图像匹配

Gábor Kertész, S. Szénási, Z. Vámossy
{"title":"基于多方向图像投影的连体神经网络车辆图像匹配","authors":"Gábor Kertész, S. Szénási, Z. Vámossy","doi":"10.1109/SACI.2018.8440917","DOIUrl":null,"url":null,"abstract":"A novel method to measure similarity on images is based on the Siamese architecture of Convolutional Neural Networks. Two identical CNNs extract the significant parts of the inputs, and a single neuron outputs the distance of the two. The aim of this paper is to introduce that the Siamese structure can be applied to match image projection based signatures of vehicles.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vehicle Image Matching Using Siamese Neural Networks with Multi-Directional Image Projections\",\"authors\":\"Gábor Kertész, S. Szénási, Z. Vámossy\",\"doi\":\"10.1109/SACI.2018.8440917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method to measure similarity on images is based on the Siamese architecture of Convolutional Neural Networks. Two identical CNNs extract the significant parts of the inputs, and a single neuron outputs the distance of the two. The aim of this paper is to introduce that the Siamese structure can be applied to match image projection based signatures of vehicles.\",\"PeriodicalId\":126087,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2018.8440917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8440917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于卷积神经网络的暹罗结构,提出了一种测量图像相似性的新方法。两个相同的cnn提取输入的重要部分,一个神经元输出两个的距离。本文的目的是介绍暹罗结构可以应用于基于图像投影的车辆特征匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Image Matching Using Siamese Neural Networks with Multi-Directional Image Projections
A novel method to measure similarity on images is based on the Siamese architecture of Convolutional Neural Networks. Two identical CNNs extract the significant parts of the inputs, and a single neuron outputs the distance of the two. The aim of this paper is to introduce that the Siamese structure can be applied to match image projection based signatures of vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信