可拓分类预测在城市月平均气温预测中的应用

Yang Yuanyuan, Zeng Tao, Yu Yongquan
{"title":"可拓分类预测在城市月平均气温预测中的应用","authors":"Yang Yuanyuan, Zeng Tao, Yu Yongquan","doi":"10.1109/ICCEE.2008.22","DOIUrl":null,"url":null,"abstract":"This paper presents a new method of prediction -- extension classified prediction, it is used to predict monthly average temperature of cities. The historical data of the monthly average temperature of cities and precipitation of cities and sunshine hours of cities are used to establish classified classics field and node field element. The dependent function of material element and extension set are applied to establish prediction model. The prediction results can be obtained by means of classified analysis. Through analyzing and calculating the real data of a certain city, the results show that extension classified prediction is effective in predicting monthly average temperature of cities.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extension Classified Prediction Used in Predicting Monthly Average Temperature of Cities\",\"authors\":\"Yang Yuanyuan, Zeng Tao, Yu Yongquan\",\"doi\":\"10.1109/ICCEE.2008.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method of prediction -- extension classified prediction, it is used to predict monthly average temperature of cities. The historical data of the monthly average temperature of cities and precipitation of cities and sunshine hours of cities are used to establish classified classics field and node field element. The dependent function of material element and extension set are applied to establish prediction model. The prediction results can be obtained by means of classified analysis. Through analyzing and calculating the real data of a certain city, the results show that extension classified prediction is effective in predicting monthly average temperature of cities.\",\"PeriodicalId\":365473,\"journal\":{\"name\":\"2008 International Conference on Computer and Electrical Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2008.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的预测方法——可拓分类预测,并将其用于城市月平均气温的预测。利用城市月平均气温、城市降水和城市日照时数的历史数据,建立分类经典场和节点场元素。利用材料元的依赖函数和可拓集建立预测模型。通过分类分析得到预测结果。通过对某城市实际数据的分析计算,结果表明,可拓分类预测在预测城市月平均气温方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension Classified Prediction Used in Predicting Monthly Average Temperature of Cities
This paper presents a new method of prediction -- extension classified prediction, it is used to predict monthly average temperature of cities. The historical data of the monthly average temperature of cities and precipitation of cities and sunshine hours of cities are used to establish classified classics field and node field element. The dependent function of material element and extension set are applied to establish prediction model. The prediction results can be obtained by means of classified analysis. Through analyzing and calculating the real data of a certain city, the results show that extension classified prediction is effective in predicting monthly average temperature of cities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信