{"title":"基于合并的分支定界最优聚类","authors":"P. Fränti, O. Virmajoki","doi":"10.3934/aci.2022004","DOIUrl":null,"url":null,"abstract":"\n We present a method to construct optimal clustering via a sequence of merge steps. We formulate the merge-based clustering as a minimum redundancy search tree, and then search the optimal clustering by a branch-and-bound technique. Optimal clustering is found regardless of the objective function used. We also consider two suboptimal polynomial time variants based on the proposed branch-and-bound technique. However, all variants are slow and has merely theoretical interest. We discuss the reasons for the results.\n","PeriodicalId":414924,"journal":{"name":"Applied Computing and Intelligence","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal clustering by merge-based branch-and-bound\",\"authors\":\"P. Fränti, O. Virmajoki\",\"doi\":\"10.3934/aci.2022004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a method to construct optimal clustering via a sequence of merge steps. We formulate the merge-based clustering as a minimum redundancy search tree, and then search the optimal clustering by a branch-and-bound technique. Optimal clustering is found regardless of the objective function used. We also consider two suboptimal polynomial time variants based on the proposed branch-and-bound technique. However, all variants are slow and has merely theoretical interest. We discuss the reasons for the results.\\n\",\"PeriodicalId\":414924,\"journal\":{\"name\":\"Applied Computing and Intelligence\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/aci.2022004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/aci.2022004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal clustering by merge-based branch-and-bound
We present a method to construct optimal clustering via a sequence of merge steps. We formulate the merge-based clustering as a minimum redundancy search tree, and then search the optimal clustering by a branch-and-bound technique. Optimal clustering is found regardless of the objective function used. We also consider two suboptimal polynomial time variants based on the proposed branch-and-bound technique. However, all variants are slow and has merely theoretical interest. We discuss the reasons for the results.